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OPERATIONS ON NON-DETERMINISTIC MATRICES AND THEIR USE

ARNON AVRON

It is well known that every propositional logic which satisfies certain very natural conditions can be
characterized semantically using a multi-valued matrix. However, there are many important decidable
logics whose characteristic matrices necessarily consist of an infinite number of truth values. In such a
case it might be quite difficult to find any of these matrices, or to use one when it is found. Even in case
a logic does have a finite characteristic matrix it might be difficult to discover this fact, or to find such a
matrix. The deep reason for these difficulties is that in an ordinary multi-valued semantics the rules and
axioms of a system should be considered as a whole, and there is no method for separately determining
the semantic effects of each rule alone. In contrast, by allowing the use of non-deterministic operations,
one can provide in a lot of cases simple modular semantics of axioms and rules of inference, so that
the semantics of a system is obtained by joining the semantics of its rules in the most straightforward
way. The main tool for this task is the use of finite non-deterministic matrices (Nmatrices). Nmatrices
differ from (ordinary) matrices in that the truth value of a compound formula may not be uniquely
determined by the truth values of its immediate subformulas, but only constrained by those truth
values. This means that truth values of compound formulas are chosen non-deterministically from a set
of options. The particular instance of ordinary matrices is obtained when all these sets are singletons.
For some logics, this generalization provides an effective finite-valued semantics, where finite-valued
matrices are beyond reach. The use of finite structures of this sort has the benefit of preserving all the
advantages of logics with ordinary finite-valued semantics, like decidability and compactness, while it
is applicable to a much larger family of logics. Accordingly, since its introduction in [6], the framework
of Nmatrices has proven to be very useful, and it has been widely investigated and utilized in various
areas, like many-valued logics, paraconsistent logics, and proof theory. (See [5] for a survey of Nmatrices
and Chapters 6–8 and 10 of [3] for some applications.)

As hinted above, one very important advantage of using Nmatrices for providing semantics for a
logic L is that it frequently allows to provide separate semantics to each rule and axiom of L, and then
get semantics for L itself using an appropriate combination of the semantics of its rules and axioms.
The basic idea here is that the main effect of a “normal” rule or axiom is to reduce the degree of
non-determinism of operations by forbidding some options (in non-deterministic computations of truth
values) which we could have had otherwise. Another significant advantage of the semantic framework of
Nmatrices is its rich general theory, which includes special useful operations, not available for matrices
(or for other types of non-deterministic semantics). Two such operations are expansion and refinement
([2, 1]). Both of these operations transform a given Nmatrix (that may be an ordinary matrix) to
another one. The former amounts to a simple duplication of the truth values that are employed in the
given Nmatrix, while the latter reduces the amount of non-determinism by taking out possible values
from the interpretations of the connectives. The two operations were shown useful for the modular
construction of families of paraconsistent logics [1, 4], as well as for studying maximality properties in
the constructed logics [2].

In this talk we mainly concentate on an operation we call rexpansion (refined expansion) which
is a quite useful combination of expansion and refinement. This combined operation proves to be a
powerful tool for generating new Nmatrices from existing ones. Properties of this combined operation
are presented, along with its effects on the consequence relations which are induced by the operated
Nmatrices. In particular, we identify a useful sufficient criterion for a rexpansion of an Nmatrix to
result in an equivalent Nmatrix, that induces the same logic.

The main application of rexpansion we present is for the problem of conservatively extending a
given logic L with new connectives which have some desirable properties. The method is to apply
appropriate rexpansion to a matrix (or an Nmatrix) that is known to be characteristic for L, getting
by this alternative semantics for it, for which the addition of the desired connectives is an easier
task. The relations between the original logic and the extended one follow then from the general
properties of rexpansions. We demonstrate this method with several examples, including matrices
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OPERATIONS ON NON-DETERMINISTIC MATRICES AND THEIR USE 5

(and Nmatrices) for classical logic, paraconsistent logics, finite-valued logics and infinite-valued logics.
The most important demonstration of this technique provides a new (and as we show, significantly
better) solution for the problem of constructing paraconsistent fuzzy logics. These are logics that are
useful for modeling vague propositions, while avoiding the explosion principle, according to which any
proposition follows from a contradiction. A first solution to this problem was given in [7], using a
completely different approach. However, we show that this solution has some serious drawbacks, which
are overcome in the solution proposed here. Our solution is obtained by performing different rexpansions
on the Gödel matrix, and then augmenting the resulted Nmatrices with an involutive negation. We
further investigate the connection between the various constructed logics.

Finally, in addition to applications of rexpansions of the abovementioned sort, we also show how
rexpansions are (implicitely) used in the construction of sequent calculi for many non-classical logics.
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THE POTENTIALITIES OF NON-STANDARD THEORIES OF PROBABILTY

WALTER CARNIELLI

The Logic of Evidence and Truth LETF , an extension of the Belnap-Dunn’s logic of First-Degree
Entailment (FDE), was introduced in [4] and extensively treated in [5]. The intention behind LETF
was to develop an intuitive logical reading for the connections between evidence and truth in terms
of preservation of evidence, in a language for a paraconsistent and paracomplete logic enriched with
the connective ◦ for consistency and • for inconsistency, interpreted respectively as classicality (or
coherence, or consistency) and non-classicality of a proposition.
LETF is Logic of Formal Inconsistency and Undeterminatedness. One of the most basic tenets of

such logics is that contradictions are inconsistent, but not necessarily the other way around: the concept
of inconsistency is wider that of the contradiction, and similarly, the concept of consistency is wider
than mere non-contradictoriness. This leads to the result that not all contradictions are the same, an
idea already voiced by some philosophers.

Although other authors such as E. Mares and G. Priest have thought about paraconsistent prob-
abilities, the first steps on a formal paraconsistent theory of probability based on a Logic of Formal
Inconsistency was introduced in [2], investigating notions of conditional probability and paraconsistent
updating via versions of Bayes’ theorem for conditionalization.

The choice for an apparently weak paraconsistent and paracomplete logic is justified since evidence
can be missing, incomplete or even contradictory. However, LETF is only apparently weak, as it fully
restores all classical reasoning in the presence of the operator for classicality.

A probabilistic semantics developed on top of LETF permits to measure and quantify the degree
of evidence attributed to a proposition. In this way a probability measure P on LETF quantifies
the amount P (α) of evidence attributed to a proposition α. Not only this, but the connective ◦ of
classicality that is part of the language of LETF permits to qualify the degree of confidence on the
evidence for a proposition α.

When ◦α holds excluded middle and explosion are valid, that is: α,¬α, ◦α ⊢ β although α,¬α ̸⊢ β,
and ◦α ⊢ α ∨ ¬α, while ̸⊢ α ∨ ¬α. The connective •α, defined as ¬ ◦ α, acts as a non-classicality
operator.
LETF is characterized (in terms of soundness and completeness) by a valuation semantics which

also provides a decision procedure for LETF (cf. [5]). Kripke-style models for LETF and for the logic
LETJ(which extends Nelson’s logic N4) appear in [1]. The models represent a database that receives
information as time passes, and such information A can be positive, negative, non-reliable, or reliable,
while a formula ◦A means that the information about A, either positive or negative, is reliable. This
proposal is in line with the interpretation of FDE and N4 as information-based logics,

The option for LETF is justified since LETF is a paraconsistent and paracomplete logic, and thus
agents under this logic can believe in contradictions and at the same time are not obliged to believe in
all classical tautologies, maintaining rationality even in incomplete or contradictory scenarios.

A second aspect connected to LETF is the interesting possibility of enlarging K. Popper’s notion
of autonomous probability, in order to obtain a new version of paracomplete and paraconsistent au-
tonomous probability theory where Kolmogorovian probabilities can be obtained as a particular case.
The main intention is to obtain a probability theory which is able to deal with contradictory events , at
the same time avoiding the philosophical criticisms about the Kolmogorovian conditional probability.

A well-known problem involving the familiar conditional probability as a ratio formula is that it rep-
resents a barrier for many applications of probability in view of the so-called problem of zero-probability.
Even if it is a consequence of the definition of standard probability theory that propositions represent-
ing contradictory events have zero probability (or in other words, classically impossible events have
zero probability), the converse is not true– events with probability zero are not impossible. There
are several examples, illustrating this point, which affects directly the classical definition of condi-
tional probability as a ratio formula, since it excludes conditional probabilities with zero antecedents:

P (A|B) = def P (A∧B)
P (B) , provided P (B) ̸= 0.

6
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I intend to discuss the ideas and the prospects of a LETF - based probability theory, as well as the
development of a new form of autonomous Popperian probability theory that circumvents the problem
of zero-probability, following the direction of Popper’s philosophy and taking into account that neither
Kolmogorov’s nor Popper’s approach deal with missing evidence (information gaps) nor with logically
conflicting situations (information gluts).

Acknowledgements. This research is partially supported by the FAPESP Thematic Project # 2020/16353-
3 and by the CNPq PQ-1A Project # 303780/2022-3.
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LOGIC OF COMBINATORY LOGIC

SILVIA GHILEZAN

Models of computation can be broadly classified into three categories: sequential models, functional
models and concurrent models. Combinatory logic (CL) is a well-known functional model of computa-
tion which accomplishes the idea to eliminate the need for quantified variables in mathematical logic.
It is based on combinators, which are higher order functions, and uses only function application. Com-
binators where invented a century ago, in the early 1920s, by Moses Schönfinkel. The foundations
of combinatory logic were established by Haskell Curry in the 1930s and it has been developing ever
since. A recent comprehensive overview can be found in [6]. CL is of the same expressive power as
the λ-calculus, the functional model of computation introduced by Alonso Church in the 1930s. With
respect to this CL captures all computable functions without using bound variables and the obstacles
that emerge from bound variables in λ-calculus are completely avoided.

Typed Combinatory logic is a system in which application is controlled by types assigned to terms.
Following the first type system of CL, called simply types, various type systems emerged, such as inter-
section types, dependent types, polymorphic types found their primary applications in programming
languages, automated theorem provers, proof assistants, program synthesis. Over time the range of
applications has been widened to machine learning, artificial intelligence, cognitive representation, nat-
ural language and physics. New applications urge for further research and development of the theory
and reasoning about CL both typed and untyped.

Various extensions of combinatory logic, both untyped and typed, have been considered in order to
obtain formalisms capable to express new features and paradigms. The extension of the syntax with new
constructors such as pairs, records, variants, among others, enables building compound data structures,
better organization of data and dealing with heterogeneous collections of values. Extending the syntax
with a new operator such as a probabilistic operator shifts the computation to a new paradigm, called
probabilistic computation. Herein, the approach we are interested in combines typed combinatory logic
with classical propositional logic.

In this talk we discuss and present an extension of the simply typed combinatory logic which is a
classical propositional logic for reasoning about combinatory logic. It is called Logic of Combinatory
logic, denoted by LCL and introduced in [4]. We define its syntax, axiomatic system and semantics.
The logic LCL, can be explained in two ways:

- LCL is a logic obtained by extending the simply typed combinatory logic with classical propo-
sitional connectives, and corresponding axioms and rules;

- LCL is a logic obtained from classical propositional logic by replacing propositional letters with
type assignment statements M : σ, i.e. typed combinatory terms, where M is a term of the
combinatory logic, and σ is a simple type.

The LCL axiomatic system has two kinds of axioms:

- non-logical axioms concerned with features of combinatory logic;
- logical axioms concerned with logical connectives.

The LCL semantics is based on the notion of applicative structures extended with special elements
corresponding to the primitive combinators. It is inspired by the applicative structures introduced in
[5], [3] and [2].

As a first result we prove the soundness and completeness of the equational theory of untyped CL
with respect to the proposed semantics. As a second result we show the soundness and completeness of
the LCL axiomatization with respect to the proposed semantics. The completeness theorem is proved
by an adaptation of the Henkin-style completeness method. We first prove that every consistent set can
be extended to a maximal consistent set, which is further used to introduce the notion of a canonical
model. We prove then that every consistent set is satisfiable. As a consequence we have the completeness
theorem: whenever a formula is a semantical consequence of a set of formulas, it is also a deductive
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LOGIC OF COMBINATORY LOGIC 9

consequence of that set. Further, we prove soundness and completeness of CL, which yields a new
semantics of CL. In addition, we prove that LCL is a conservative extension of the simply typed CL.

We will conclude the talk with discussing related work ([1]) and possible applications in automated
reasoning and knowledge representation.

The present talk is based on joint work with Simona Kašterović ([4]).
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CONSTRUCTIVE INTERPRETATIONS OF LOGICAL AND

LOGICAL-MATHEMATICAL LANGUAGES

VALERII PLISKO

A survey of the author’s main results obtained during his lifetime is offered in the context of research
in the field of constructive logic conducted in the USSR and Russia (and not only) in the last 50 years.

1. Propositional logic of recursive realizability. By constructive semantics we will understand
intuitionistic interpretations of logical and logical-mathematical languages, in which the concept of
an effective operation is explained through the concept of an algorithm. The first semantics of this
kind called recursive realizability was proposed by S.C. Kleene for the formal arithmetic language.
On its basis, various variants of the concept of a realizable predicate (in particular, propositional)
formula are possible, of which irrefutability and effective realizability deserve the most attention. A
predicate formula is called irrefutable if the universal closure of any arithmetic example of this formula
is realizable. A closed predicate formula is called effectively realizable if there exists an algorithm that
allows for any closed arithmetic instance of this formula to find its realization. The author proved [1]
that in general these concepts do not coincide, but for propositional formulas the question of their
coincidence or difference remains open.

In 1932 A.N. Kolmogorov proposed an informal interpretation of intuitionistic logic as the logic of
problems. 30 years later, this idea was somewhat refined by Medvedev in the form of the concept
of finite validity for propositional formulas. In 1963, Medvedev [2] published an erroneous proof of
the theorem that every realizable propositional formula is finitely valid. The author has constructed
a counterexample to this statement. In this case, the finite model property of the Medvedev logic
and Yankov’s characteristic formulas [3] were significantly used. A detailed exposition of this result
is available in [4]. Medvedev proved the completeness of fragments of the intuitionistic propositional
calculus IPC without negation and disjunction with respect to finite validity. From the above-mentioned
erroneous theorem, a similar result was obtained for the propositional logic of recursive realizability.
The author proved that the completeness of these fragments of the calculus IPC with respect to recursive
realizability really holds. A detailed proof is available in [5].

2. Predicate logic of recursive realizability. The propositional logic of recursive realizability is
difficult to investigate. The situation is much better with the predicate logic of recursive realizability.
The author proved [6] that the set of all realizable predicate formulas is not arithmetic. The proof
was based on the Tennenbaum theorem that there are no recursive non-standard models of arithmetic.
The technique developed at the same time allowed solving many issues related to the predicate logic of
recursive realizability. The scheme theorem is technically important. The concept of a scheme over the
arithmetic language was introduced by M.M. Kipnis [7]. A scheme is a formula in the mixed language
of arithmetic and predicate logic. For schemes, all concepts of realizability are introduced by analogy
with predicate formulas. The scheme theorem [1] states that for any scheme it is possible to efficiently
construct a predicate formula that is realizable in one sense or another if and only if the original scheme
is realizable in the same sense. This made it possible to show the difference between the mentioned
variants of realizability for predicate formulas, as well as their difference from the concept of uniform
realizability, meaning the existence of a single realization for all closed arithmetic instances of a closed
predicate formula.

It follows from the Nelson theorem that the intuitionistic predicate calculus IQC is sound with respect
to recursive realizability. It was shown by Rose that the calculus IPC is not complete with respect to
this semantics. Subsequently, Markov formulated a logical principle, now called the Markov principle,
meaning, in particular, the realizability of the predicate formula

∀x (P (x) ∨ ¬P (x)) → (¬¬∃xP (x) → ∃xP (x))

(denote it M), non-deducible in IQC. A scheme ECT over the arithmetic language, called the extended
Church thesis, is sound with respect to the semantics of recursive realizability. In the presence of
Markov’s principle, this scheme is equivalent to the scheme

∀x (¬A(x) → ∃y B(x, y)) → ∃z ∀x (¬A(x) → ∃y ({z}(x) = y&B(x, y))),
10



CONSTRUCTIVE INTERPRETATIONS OF LOGICAL AND LOGICAL-MATHEMATICAL LANGUAGES 11

where {z} denotes a partial recursive function with a Gödel number z. The scheme theorem allows us
to replace this scheme with a predicate formula; we denote it ECT ∗. In the author’s paper [9] it is
introduced the calculus MQC = IQC+M + ECT ∗, which can be considered as a possible constructive
predicate calculus. Note that this calculus is not intermediate between intuitionistic and classical calculi.
The arithmetic theory based on the calculus MQC and the Peano axioms is an extension of Markov
arithmetic MA = HA+M + ECT .

3. Absolute realizability. During the study of the predicate logic of recursive realizability, it
was revealed that the semantics of predicate formulas under consideration is somewhat occasional. If
we add the truth predicate to the language of formal arithmetic, in a natural way extend the concept
of recursive realizability to this extended language and define the concept of a realizable predicate
formula, then the set of such formulas will significantly narrow. In the paper [10] the author has
shown that this procedure can be done up to any constructive ordinal, thus we obtain a transfinite
hierarchy of constructive logics. The dependence of predicate logic on the language in which the values
of predicate variables are formulated leads to the need to develop constructive semantics that does not
depend on this language. It is possible to do this, however, while somewhat avoiding the idea of strict
constructiveness and working within the framework of traditional set-theoretic mathematics. In the
paper [11] the author introduced the concept of a generalized predicate and the concept of absolute
realizability for predicate formulas. At the same time, it turned out that the concepts of absolute
irrefutability and uniform absolute realizability are identified. It has been proved that the predicate
logic of absolute realizability is Π1

1-complete. It also turned out that it is quite possible to do without a
broad set-theoretic rampage: if the predicate formula is not uniformly absolutely realizable, then there
is a refutation of it in the language obtained by adding to the arithmetic language any Π1

1-complete
predicate. On the basis of the concept of a generalized predicate, in the paper [12] the author has
developed the elements of constructive model theory, in which constructive logic is combined with the
classical theory of constructive models.

4. Predicate logics of constructive theories. Once G.E. Mints asked the author what about
the predicate logic based on the translation from the language of arithmetic into the language of
arithmetic in all finite types proposed by K. Gödel [13]. Later it turned out that he meant a set-
theoretic interpretation of such a translation, and the answer is trivial: such logic coincides with the
classical one. However, the author was interested in constructive semantics. Since Gödel’s translation
is much more complicated than recursive realizability, intuitive approaches do not work here at all. The
author had to formalize in a fairly general way the methods of investigating predicate logics based on
the application of the Tennenbaum theorem. A constructive arithmetic theory is any extension of the
theory HA+M + CT , where CT is the scheme

∀x ∃y A(x, y) → ∃z ∀x∃y ({z}(x) = y&A(x, y)).

If T is an arithmetic theory, then we will call a closed predicate formula T -valid if every closed arithmetic
instance of it belongs to the theory T . Call the set of all T -valid formulas the predicate logic of the
theory T and denote L(T ). In the paper [14] the author has proved that if T is a constructive arithmetic
theory, then T ≤1 L(T ). For a number of theories, the nonarithmeticity of the corresponding predicate
logic is thus established. In fact, the nonarithmeticity result can be extended to a broader class of
so-called IS-theories. An extension of the theory HA is called IS-theory if there are such Σ1-formulas
A(x) and B(x) that the formula ∀x¬(A(x)&B(x))&¬∀x ∃y ((A(x) → y = 0)& (B(x) → y ̸= 0))
belongs to this theory In particular, all constructive arithmetic theories are IS-theories. It is proved
that if T is IS-theory, then T− ≤1 L(T ), where T− is the negative fragment of the theory of T . The
mentioned theorems imply the nonarithmeticity of a number of predicate logics based on the modified
realizability introduced by Kreisel [15], and the undecidabilty of some predicate logics based on the
Gödel interpretation. The above theorems give lower bounds of the logical complexity of constructive
predicate logics. In 1985, V.A. Vardanyan [16] obtained an upper bound on the predicate logic of
provability. The ideas he used were successfully applied to the study of predicate logics of the so-called
internally enumerable arithmetic theories. In the paper [17] the author has proved that the predicate
logic of every internally enumerable IS-theory is ΠT

1 -complete. Hence, for example, it follows that
the predicate logic of recursive realizability is ΠV

1 -complete, where V is the set of all true arithmetic
sentences, and also that the predicate logic of Markov arithmetic is Π2

0-complete.
5. Primitive recursive realizability. It is of interest to consider variants of intuitionistic seman-

tics, in which not the entire class of partial recursive functions is used for the interpretation of effective
operations, as in Kleene’s recursive realizability, but some of its subclasses. In 1994 Z. Damnanovich [18]
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introduced the concept of strictly primitive recursive realizability for arithmetic formulas, which com-
bines the ideas of recursive realizability and Kripke models. In 2003 B.H. Park proved in his dissertation
that the predicate logic of strictly primitive recursive realizability is nonarithmetic. The proof was es-
sentially based on the claim from [18] that the calculus IQC is sound with respect to strictly primitive
recursive realizability. Later, in the paper [19], the author proved the fallacy of that claim. However,
the result of Park remains true. The correct proof of it was obtained by the author [20]. Another
variant of primitive recursive realizability is proposed by S. Salehi [21]. In the paper [19] the author
proves that this concept differs significantly from the concept of strictly primitive recursive realizabil-
ity. The nonarithmeticity of predicate logic of primitive recursive realizability by Salehi is proved in
D.A. Viter’s dissertation. His technically complex proof is based on the author’s results mentioned
above about predicate logics of constructive theories and results of M. Ardeshir [22] on a translation of
intuitionistic predicate logic into basic predicate logic. In the paper [23] the author proposed another,
ideologically and technically simpler proof of the same result.
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COMPUTATIONAL COMPLEXITY OF THEORIES OF

RESIDUATED STRUCTURES

DMITRY SHKATOV

The present talk is based on joint work with C. J. Van Alten [5, 8].

Residuated structures are used as algebraic models of a wide variety of propositional logics; they play
particularly prominent role in the study of substructural logics. Equational and atomic theories of such
structures correspond to sequents provable in logics; quasi-equational and Horn theories correspond to
statements of derivability of sequents from sets of sequents; universal theories correspond to inferences
of Boolean combinations of sequents from Boolean combinations of sequents.

In this talk, we are concerned with the following types of residuated structures. A residuated ordered
groupoid (rog, for short) is a tuple ⟨A,⩽, ◦, \, /, ⟩, where ⟨A,⩽⟩ is a partially ordered set, and ◦, \, and
/ are binary operations on A satisfying the residuation condition:

a ◦ b ⩽ c ⇐⇒ b ⩽ a\c ⇐⇒ a ⩽ c/b. (1)

The class of all rogs shall be denoted by ROG. A residuated distributive lattice-ordered groupoid (rdg,
for short) is a tuple ⟨A,∨,∧, ◦, \, /⟩, where ⟨A,∨,∧ ⩽⟩ is a distributive lattice, and ◦, \, and / are
binary operations on A satisfying (1). The class of all rdgs shall be denoted by RDG.

Theories of rogs shall be stated in a first-order language in the signature with operation symbols ◦,
\, and /, and the relational symbol ⩽. Theories of rdgs shall be stated in a first-order language in the
signature with operation symbols ∨, ∧, ◦, \, /, and the relational symbol = (the relational symbol ⩽
is definable in the standard way: a ⩽ b := a ∧ b = a). For both rogs and rdgs, terms and valuations
are defined in the standard way. The evaluation of formulas and validity are defined as in the standard
model theory.

The atomic theory of ROG is the set of the atomic formulas (i.e., expressions of the form s ⩽ t)
valid in ROG. The Horn theory of ROG is the set of formulas of the form α1∧̇ . . . ∧̇αn ⇒ α, where
α1, . . . , αn and α are all atomic, valid in ROG. The universal theory of ROG is the set of formulas
∀x1 . . . ∀xnφ(x1, . . . , xn), where φ is a Boolean combination of atomic formulas, valid inROG. The equa-
tional theory ofRDG is the set of equations valid inRDG. The quasi-equational theory ofRDG is the set
of quasi-equations (i.e., expressions of the form α1∧̇ . . . ∧̇αn ⇒ α, where α1, . . . , αn and α are all equa-
tions) valid in RDG. The universal theory of RDG is the set of formulas ∀x1 . . . ∀xnφ(x1, . . . , xn), where
φ is a Boolean combination of equations, valid in RDG. It was established by Aarts and Trautwein [1]
that the atomic theory of ROG, and by Buszkowski [2] that the Horn theory of ROG, are polynomial-
time decidable. We present here results on the complexity of universal theory of ROG, as well as
universal and quasi-equational theories of RDG:

Theorem 1. The universal theory of ROG is coNP-complete.

Theorem 2. The universal and quasi-equational theories of RDG are both EXPTIME-complete.

The upper bounds are obtained through the use of partial algebras [9, 6, 7]. We show that, if a
quantifier-free formula φ is satisfiable in a rog, this is witnessed by a partial rog of size polynomial in
the size of φ; moreover, we identify a set of polynomial-time verifiable structural conditions ensuring
that a partial structure is a partial rog. This gives us a non-deterministic polynomial-time algorithm for
checking satisfiability of quantifier-free formulas in ROG: we guess a partial structure of size polynomial
in the size of the input formula φ, check that this structure is a partial rog, and lastly check if φ is
satisfied in the structure we guessed. Analogously, we show that, if a quantifier-free formula φ is
satisfiable in a rdg, this is witnessed by a partial rdg of size exponential in the size of φ; moreover, there
exists a deterministic algorithm for checking if such a partial rdg exists for a formula (the algorithm
is based on a structural characterization of partial rdgs using exponential-time verifiable properties of
partial structures). In the structural characterization of partial rogs and partial rdgs we essentially rely
on the relational frame theory developed by Dunn [3, 4].

The lower bound for Theorem 1 follows from a simple observation that the universal theory of a class
of non-trivial structures is as computationally hard the Boolean logic. The lower bound for Theorem 2

13
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is obtained by reduction from a corridor tiling game through satisfiability in a modal logic with the
universal modality.
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ALGORITHMIC COMPLEXITY OF

MONADIC MULTIMODAL PREDICATE LOGICS WITH EQUALITY

OVER FINITE KRIPKE FRAMES

IRINA AGADZHANIAN, MIKHAIL RYBAKOV, AND DMITRY SHKATOV

1. Introduction

Monadic modal and superintuitionistic logics are, as a rule, undecidable in very poor vocabularies—in
most cases, to prove undecidability, it suffices to use a single monadic predicate letter and two or three
individual variables [9, 11, 12, 13, 14, 8] (for undecidability of related fragments of the classical logics,
see [17, 10, 6, 7]). At the same time, the monadic fragment with equality of the classical predicate logic
QCl= is decidable [1]. Hence, it is of interest to identify settings where decidability can be obtained.

Proofs of undecidability of monadic fragments usually rely on the so-called the “Kripke trick” [4], a
simulation of a subformula P (x, y) of a classical formula with a monadic modal formula3(Q1(x)∧Q2(y)).
Hence, indentifying decidable fragments involves discovering setting where the Kripke trick is not ap-
plicable. This has been done syntactically by Wolter and Zakharyaschev [18], who discovered monodic
fragments (note that these differ from monadic fragments) disallowing the application of modalities to
formulas with more than one parameter. Here, we consider a simple semantical setting where the Kripke
trick does not work: the monadic predicate logic with equality of a Kripke frame with finitely many
possible worlds (but, possibly, infinite domains). We also obtain precise complexity bounds for monadic
logics of classes of Kripke frames with finitely many possible worlds. This is of interest since precise
bounds beyond Σ0

1 hardness are scarce in the literature on predicate modal logic. The observations
presented here are generalizations to the multimodal settings of results from in [5, 15].

2. Preliminaries

We consider the n-modal, where n ∈ N+, predicate language Ln obtained by adding to the classical
predicate language L0 unary modal connectives 21, . . . ,2n, as well as the language L=

n obtained by
adding to Ln a designated binary predicate letter =. The definitions of formulas are standard. A
monadic Ln-formula contains only monadic predicate letters. A monadic Ln-formula with equality
contains only monadic predicate letters and =.

By a normal n-modal predicate logic we mean a set of Ln-formulas including the classical predicate
logic QCl and the minimal normal n-modal propositional logic Kn and closed under Modus Ponens,
Substitution, Necessitation, and Generalisation. A normal n-modal predicate logic with equality ad-
ditionally contains the classical equality axioms. The minimal logic containing QCl and the n-modal
propositional logic L is denoted by QL; the minimal extension of QL containing the classical equality
axioms is denoted by Q=L. The minimal extension of an n-modal predicate logic L containing, for
each k ∈ {1, . . . , n}, the Barcan formula bfk = ∀x2kP (x) → 2k∀xP (x), is denoted by L.bf .

A fusion of 1-modal propositional logics L1, . . . , Ln is the logic L1∗. . .∗Ln = Kn⊕(L1∪L′
2∪. . .∪L′

n),
where L′

i is obtained from Li by replacing every occurrence of 21 with 2i.
We use the framework of Kripke semantics for logics with and without equality (for more details,

see [3]; our terminology differs from that adopted in [3]). There are two natural way to extend the
well-known Kripke semantics for logics without equality to logics with equality; to treat equality as
identity or as hereditary congruence. Unlike the classical logic, these two treatments of equality are not
equivalent: the formula x ̸= y → 2k(x ̸= y) is valid if = is interpreted as identity, but not valid if = is
interpreted as hereditary congruence. Here, except in Section 4, we treat equality as congruence.

A Kripke n-frame is a tuple F = ⟨W,R1, . . . , Rn⟩, where W is a non-empty set of worlds and
R1, . . . , Rn are binary accessibility relations on W . An augmented n-frame is a tuple F = ⟨F, D⟩,
where F is a Kripke n-frame and D a family (Dw)w∈W of non-empty domains satisfying the expanding
domains condition: for every w, v ∈W ,

(E ) wRkv =⇒ Dw ⊆ Dv.
16
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The condition (E ) is required for soundness and completeness of predicate modal logics whose L0-fragment
is QCl. If an augmented n-frame satisfies

(C ) wRkv =⇒ Dw = Dv,

then it is called a locally constant augmented n-frame. A model is a tuple M = ⟨F, I⟩, where F is an
augmented n-frame and I is a family (Iw)w∈W of interpretations of predicate letters: Iw(P ) ⊆ Dm

w , for
every m-ary letter P .

An augmented n-frame with equality is a tuple F = ⟨F, D,≡⟩, where ⟨F, D⟩ is an augmented n-frame
and ≡ is a family (≡w)w∈W of equivalence relations, with ≡w ⊆ D2

w whenever w ∈ W , satisfying the
heredity condition: for every w, v ∈W ,

(H ) wRkv =⇒ ≡w ⊆ ≡v.

The condition (H ) corresponds to the formula x = y → 2k(x = y), which belongs to Q=K, and hence
to every normal modal predicate logic with equality. A model with equality is a tuple M = ⟨F, I⟩,
where F is an augmented n-frame with equality and I is a family (Iw)w∈W of interpretations of predicate
letters such that ≡w is a congruence on the classical model Mw = ⟨Dw, Iw⟩.

The truth relation for Ln and L=
n is defined by usual way; in particular, if a, b ∈ Dw and c̄ is a list

of elements of Dw of a suitable length, then

M, w |= a = b ⇋ a ≡w b;
M, w |= P (c̄) ⇋ c̄ ∈ Iw(P );
M, w |= ∀xφ(x, c̄) ⇋ M, w |= φ(d, c̄), for every d ∈ Dw;
M, w |= 2kφ(c̄) ⇋ M, v |= φ(c̄), for every v ∈ Rk(w).

The following definitions concern both Ln and L=
n ; for the latter, all the models and augmented frames

should be understood as those with equality. A formula φ is true at a world w if a universal closure
of φ is true at w. A formula φ is true in a model M if φ true at every world of M; φ is valid on an
augmented n-frame F if it is true in every model over F; φ is valid on a Kripke n-frame F if φ is valid
on every augmented n-frame over F; φ is valid on a class C of augmented frames if it is valid on every
augmented frame from C .

If C is a class of Kripke n-frames and F is a Kripke frame, then

• L(C ) denotes the set of Ln-formulas valid on C ;
• Lc(C ) denotes the set of Ln-formulas valid on every locally constant augmented n-frame over

a Kripke frame from C ;
• L=(C ) denotes the set of L=

n -formulas valid on C ;
• L=

c (C ) denotes the set of L=
n -formulas valid on every locally constant augmented n-frame with

equality over a Kripke frame from C .

We write L=(F) and L=
c (F) rather than L

=({F}) and L=
c ({F}), respectively.

A Kripke n-frame ⟨W,R1, . . . , Rn⟩ is finite if W is a finite set. If L is an n-modal predicate logic
(with or without equality), then Lwfin denotes the set of formulas valid on every finite Kripke frame
validating L; this set is a normal n-modal predicate logic.

3. Main results

The following is our main technical result:

Proposition 1. Let F be a finite Kripke frame. Then, the monadic fragments with equality of the logics
L=(F) and L=

c (F) are both decidable.

From Proposition 1 we obtain the following:

Theorem 2. Let C be a recursively enumerable class of finite Kripke n-frames. Then the monadic
fragments with equality of the logics L=(C ) and L=

c (C ) are both in Π0
1.

It is known [12, Theorem 3.9] that, if L is a logic from one of the intervals [QKwfin ,QGL.3.bfwfin ],

[QKwfin ,QGrz.3.bfwfin ] or [QKwfin ,QS5wfin ], then the monadic fragment of L is Π0
1-hard. Hence,

Theorem 2, together with the transfer of completeness theorem for fusions [2, Theorem 4.1], give us the
following:

Corollary 3. Let L = L1 ∗ . . . ∗ Ln, where L1, . . . , Ln are normal 1-modal propositional logics, such
that

• Li ⊆ S5 or Li ⊆ GL.3 or Li ⊆ Grz.3, for some i ∈ {1, . . . , n};
• the class of finite Kripke frames validating L is recursively enumerable.
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Then, the monadic fragments of the logics QLwfin , QL.bfwfin and the monadic fragments with equality
of the logics Q=Lwfin , Q=L.bfwfin are all Π0

1-complete.

Corollary 4. Let L be one of the logics K, T, D, K4, K4.3, S4, S4.3, GL, GL.3, Grz, Grz.3,
KB, KTB, K5, K45, S5. Then, the monadic fragments of the logics QLwfin

n , QLn.bf
wfin and the

monadic fragments with equality of the logics Q=Lwfin
n , Q=Ln.bf

wfin are Π0
1-complete.

From Proposition 1 we also obtain the following:

Theorem 5. Let C be a decidable class of Kripke 1-frames closed under the operation of taking sub-
frames and satisfying the condition that there exists m ∈ N such that |R(w)| ⩽ m whenever ⟨W,R⟩ ∈ C
and w ∈ W . Then the monadic fragments of the logics L(C ), Lc(C ) and the monadic fragments with
equality of the logics L=(C ), L=

c (C ) are decidable.

Recall that Altn is a monomodal logic complete with respect to the class of Kripke frames where
every world sees at most n worlds. Using completeness of the predicate counterpart of Altn [16], which,
using [3, Theorem 3.8.7], implies the completeness of Q=Altn, we obtain the following:

Theorem 6. The monadic fragments of logics QAltn, QAltn.bf , Q
=Altn, and Q=Altn.bf are all

decidable.

4. Discussion

Proposition 1 and Theorem 2 remain true in the Kripke semantics with equality as identity. Propo-
sition 1 and Theorem 2 can be extended to logics of frames with distinguished worlds. All the results
remain true if logics QL.bf and Q=L.bf are replaced with logics in which, for some k, the Barcan
formula bfk is replaced with 2bfk, where 2 is a finite sequence of 21, . . . ,2n. Lastly, we note that
similar results can be obtained for superintuitionistic monadic logics [15].
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DYNAMIC EPISTEMIC LOGIC FOR BUDGET-CONSTRAINED AGENTS

VITALIY DOLGORUKOV AND MAKSIM GLADYSHEV

This abstract is based on recent work in [6]. We present a static (ELbc) and dynamic (DELbc)
epistemic logic for budget-constrained agents. ELbc extends a standard multi-agent epistemic logic
with expressions concerning agent’s budgets and formulas’ costs. DELbc extends ELbc with dynamic
modality “[?iA]φ” which reads as “φ holds after i’s question whether a propositional formula A is
true”. We provide a sound and complete axiomatization for ELbc and DELbc and show that both logics
are decidable.

1. Motivation

Dynamic epistemic logic [18, 11, 14] is a common way of describing agents’ knowledge and informa-
tional changes. But nowadays, our intuition about the nature of agents’ reasoning and interaction tells
us that both processes of operating with available knowledge and obtaining a new one cannot always
be effortless. This natural intuition demonstrates that reasoning often becomes a resource consuming
action. A lot of researchers of epistemic logic paid attention to this problem and found different ap-
proaches to formalising the idea of resource-bounded agents [9]. The wide range of existing approaches,
describing non-omniscient agents, consider resources as various cognitive limits.

Non-omniscience can be described through time- and memory-constrained agents who do not neces-
sarily know all the logical consequences of their knowledge. Some papers model such constraints through
so-called inferential actions, which require agents to take explicit inference steps, spending available re-
sources to deduce the logical consequences of their knowledge [16]. Other papers extend the idea of a
bounded deliberation process with resource consuming inference actions by introducing perception [4]
or rule-based models [13] and their effects on formation of agents’ beliefs. The idea of resource-bounded
agents, situated in agent–environment systems that takes into account agents’ observations, beliefs,
goals and actions, sounds promising both for philosophers and computer scientists [2]. Most contempo-
rary papers on resource-bounded reasoning would agree that modelling of non-omniscient agents does
not mean modelling of imperfect reasoners. On the contrary, a lot of papers argue that epistemic logic
must formalise the idea that if the agent knows all necessary premises and either thinks hard enough
[7] or has enough time [3, 1], then they will know the conclusion. Thus, the reasoning process itself can
justifiably be considered as an ongoing time-consuming [12], as well as a memory-consuming [8] process.
This intuition bridges the gap between reasoning and computation process and sounds fruitful for AI
research. While this is a reasonable assumption which is worth studying, both time- and memory-based
approaches deal with ’inner’ obstacles of an agent’s deliberation process. Thus, even existing papers
studying resource constraints in agent-environment settings consider resources as a tool of reasoning or
obtaining new information from already available agent’s knowledge. At the same time, a lot of real-life
scenarios demonstrate that resources can also be considered as an instrument of obtaining new, indepen-
dent or already available, information from the outside. In other words, solving some tasks can require
getting additional information, which is not necessarily costless. Our main goal is to consider logically
omniscient reasoners who can interact with the environment (in the sense of an independent bystander)
and obtain new information from this environment by spending a certain amount of resources.

A similar attempt was made by Naumov and Tao [15]. Their paper describes budget-constrained
agents in epistemic settings. It catches the intuition that sometimes agents have to spend their resources
to obtain the knowledge of some fact. But since their logic is static and describes resource constraints as
a feature of the knowledge operator itself, this approach violates the Negative Introspection axiom, so
it appears to be a S4-like system. Nevertheless, this S4-like epistemic logic is complete, with respect to
S5-like structures. We aims to demonstrate that reasoning about knowledge and informational change
under budget constraints can be described by an S5-like system if we consider this informational change
explicitly in DEL-style language.

We assume that agents can purchase information, spending some resources available to them. Intu-
itively, agents can ask a question ”is A true?” and get a positive or negative answer. Sometimes, this
question can require some resources.

20



DYNAMIC EPISTEMIC LOGIC FOR BUDGET-CONSTRAINED AGENTS 21

2. Language

Let Prop = {p, q, . . . } be a countable set of propositional letters. Denote by PL the set of all
propositional (non-modal) formulas defined by the following grammar (where p ranges over Prop, other
connectives are defined in a standart way): A,B ::= p | ¬A | (A ∧B).

The language ELbc. Let Agt = {i, j, . . . } be a finite set of agents. We fix a set of constants Const =
{cA | A ∈ PL} ∪ {bi | i ∈ Agt}. It contains a constant cA for the cost of each propositional formula A
and a constant bi for the budget of each agent i. Formulas of the language ELbc are defined by the
following grammar:

φ,ψ ::= p | (z1t1 + . . .+ zntn) ≥ z | ¬φ | (φ ∧ ψ) | Kiφ

where p ranges over Prop, i ∈ Agt, t1, . . . , tn ∈ Const and z1, . . . , zn, z ∈ Z.
Other Boolean connectives →,∨,↔,⊥ and ⊤ are defined in the standard way. The dual operator

for Ki is defined as K̂iφ := ¬Ki¬φ. We will also use K?
i φ as an abbreviation for (Kiφ ∨ Ki¬φ).

Note that we introduce the cost cA only for propositional formulas A ∈ PL. The logic with costs of
arbitrary epistemic formulas is left for future research. We deal with linear inequalities and use the
same abbreviations as in [10]. Thus, we write t1 − t2 ≥ z for t1 + (−1)t2 ≥ z, t1 ≥ t2 for t1 − t2 ≥ 0,
t1 ≤ z for −t1 ≥ −z, t1 < z for ¬(t1 ≥ z), and t1 = z for (t1 ≥ z) ∧ (t1 ≤ z). Thus, the language ELbc
allows us to express statements such as: “cp∧q ≥ 7”, “bi ≥ 5”, “2bi = bj”, “Kc(bi + bj ≥ cp∨q)” etc.

The set of subformulas Sub(φ) of a formula φ is defined in the standard way note that if a constant
cA occurs in φ then we do not count A as a subformula of φ.

3. Semantics

A model M of the logic ELbc has the components standard for the multi-modal logic S5, namely, a
non-empty set of statesW , an epistemic accessibility relation ∼i for each agent i ∈ Agt, and a valuation
V : Prop → 2W . Besides, a modelM contains a function Cost that assigns to every propositional formula
at each state its cost, and a function Bdg that assigns to each agent i ∈ Agt at each state w ∈W the
available amount of resources.

A model is a tuple M = (W, (∼i)i∈Agt,Cost,Bdg, V ), where

• W is a non-empty set of states,
• ∼i ⊆ (W ×W ) is an equivalence relation for each i ∈ Agt,
• Cost : W × PL −→ R+ is the (non-negative) cost of propositional formulas,
• Bdg : Agt×W −→ R+ is the (non-negative) bugdet of each agent at each state,
• V : Prop → 2W is a valuation of propositional variables.

Thus both the cost of a formula and the budget of an agent depend on a current state. We use
Bdgi(w) as an abbreviation for Bdg(i, w), where i ∈ Agt and w ∈W . In order to formulate additional
constraints on the function Cost, we need the following notation. Let PL be the classical propositional
logic. For any propositional formulas A and B:

• A and B are called equivalent : A ≡ B iff ⊢PL A↔ B,
• A and B are called similar : A ≈ B iff A ≡ B or A ≡ ¬B.

We also impose the following conditions on the function Cost:

(C1) Cost(w,⊥) = Cost(w,⊤) = 0,
(C2) A ≈ B implies Cost(w,A) = Cost(w,B), for all A,B ∈ PL and all w ∈W .

The truth ⊨ of a formula A at a state w ∈ W of a model M is defined by induction:M, w ⊨ p iff
w ∈ V (p),
M, w ⊨ ¬φ iff M, w ⊭ φ,
M, w ⊨ φ ∧ ψ iff M, w ⊨ φ and M, w ⊨ ψ,
M, w ⊨ Kiφ iff ∀w′ ∈W : w ∼i w

′ ⇒ M, w′ ⊨ φ,
M, w ⊨ (z1t1 + · · ·+ zntn) ≥ z iff (z1t

′
1 + · · ·+ znt

′
n) ≥ z, where for 1 ≤ k ≤ n,

t′k =

{
Cost(w,A), for tk = cA,

Bdgi(w), for tk = bi.

We refer to the class of all models satisfying all properties mentioned above as M. We write ⊨M φ
if the formula φ is valid in the class of models M.
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4. Axiomatization

The axiomatisation of the logic ELbc is presented in Table 1. Here, (Ineq) is the set of axioms for
linear inequalities firstly described in [10] and used later for similar purposes in [16].

Table 1. Proof system for ELbc

Axioms:
(Taut) All instances of propositional tautologies
(Ineq) All instances of the axioms for linear inequalities
(K) Ki(φ→ ψ) → (Kiφ→ Kiψ)
(T) Kiφ→ φ
(4) Kiφ→ KiKiφ
(5) ¬Kiφ→ Ki¬Kiφ
(Bd) bi ≥ 0
(≥1) cA ≥ 0
(≥2) c⊤ = 0
(≥3) cA = cB if A ≈ B, for all formulas A,B ∈ PL

Inference rules:
(MP) From φ and φ→ ψ, infer ψ
(Neci) From φ infer Kiφ

Axiomatization of DELbc can be obtained by adding the reduction axioms from Table 2 to the

axiomatization of ELbc. The notation
(
(z1t1 + · · · + zntn) ≥ z)

)[bi\(bi−cA)]
means that all occurrences

of bi in (z1t1 + · · ·+ zntn) ≥ z are replaced with (bi − cA).

Table 2. Reduction axioms and inference rules

(Rp) [?iA]p↔ (bi ≥ cA) → p
(R≥) [?iA]

(
(z1t1 + · · ·+ zntn) ≥ z)

)
↔ (bi ≥ cA) →

→
(
(z1t1 + · · ·+ zntn) ≥ z)

)[bi\(bi−cA)]

(R¬) [?iA]¬φ↔ (bi ≥ cA) → ¬[?iA]φ
(R∧) [?iA](φ ∧ ψ) ↔ [?iA]φ ∧ [?iA]ψ
(RKj

) [?iA]Kjφ↔ (bi ≥ cA) → Kj [?iA]φ, where i ̸= j
(RKi) [?iA]Kiφ↔ (bi ≥ cA) →

→
((
A→ Ki(A→ [?iA]φ)

)
∧
(
¬A→ Ki(¬A→ [?iA]φ)

))
(Rep) From ⊢ φ↔ ψ, infer ⊢ [?iA]φ↔ [?iA]ψ

Theorem 1. The logic ELbc is sound and complete w.r.t. M.

Here we prove only weak completeness result due to non-compactness of ELbc. To see that ELbc is
non-compact consider a set of ELbc-formulas: {cA > n | n ∈ N}. It is easy to see that any finite subset
of this set is satisfiable while the set itself is not.

Theorem 2. The logic DELbc is sound and weakly complete w.r.t. M.
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THE STRUCTURAL DEFINITION OF LOGICAL NEGATION THROUGH THE

DOUBLY NEGATED PROPOSITIONS

ANTONINO DRAGO

In the second half of 20th Century scholars of mathematical logic privileged the double negation law
with respect to the excluded middle law in the role of differentiating classical logic from most kinds
of non-classical logic, first of all intuitionist logic, and then the minimal one, the positive one, etc.
(Prawitz and Melmnaas 1968; Prawitz 1976).

Against scientists’ custom of introducing into both Logic and Mathematics idealistic notions, re-
spectively Intuitionists (Brouwer 1975, Dummett 1977) and Constructivists (Bishop 1967, pp. 1–10)
claimed a basic requirement, i.e. a proposition is true only if is supported by factual evidence; in the
case a proposition does not satisfy such a requirement and there is no evidence of its falsity, it has to be
replaced by its doubly negated proposition according to the “[doubly] negative translation” (Troelstra
and van Dalen 1988, pp. 56ff.); one obtains a doubly negated proposition which is not equivalent to the
corresponding affirmative proposition owing to latter’s lack of evidence (DNP). In the following each
doubly negated proposition whose corresponding affirmative one lacks of evidence or even is different
in meaning will be considered a DNP pertaining to intuitionist logic.

Along two millennia a clear presentation of a scientific theory was equated to a systematic theoretical
organization of a deductive kind from few axioms, irrespectively they were supported by evidence or
not (AO). It is easy to recognize that this kind of organization does not include a DNP because it
is impossible to draw a DNP from an axiom, which, being an affirmative proposition is equivalent to
its doubly negated proposition. On the other hand, a DNP cannot play the role of an axiom of an
axiomatic system, because its content cannot be defined with certainty, except for stating a bound to
our thinking; and in any case, no affirmative proposition can be derived from a DNP, for which the
double negated law fails. The question arises of how DNPs may compose a theory.

In the past, several scientific theories have been presented by their respective authors in a non-
axiomatic way. A comparative analysis on their original texts shows the characteristic features of a
common model of theoretical organization.

i) No more than the common knowledge on the field at issue is presupposed.
ii) A problem which is unsolvable through usual tools is declared; e.g., in Lavoisier’s 18th century

chemistry: what are the elements of the matter; in Lazare Carnot’s mechanics: what are the invariants
in a collision of bodies; in S. Carnot’s thermodynamics: what is the maximum efficiency of the heat/work
transformations; in Lobachevsky’s geometry: how many parallel line exist; in Kolmogorov’s 1924/25
paper: why has the illegitimacy of the use of the law of excluded middle gone unnoticed. I call this
problem-based kind of theoretical organization a PO.

iii) The aim is to invent a new scientific method capable to solve the given problem.
iv) The theory argues by linking together the DNPs in order to constitute — through words as

“otherwise we obtain an absurd result” — an ad absurdum argument (AAA); which is of a weak kind,
i.e. its final proposition is a DNP (a common opinion wrongly holds that an ad absurdum argument
concludes an affirmative proposition; that is true only if one applies to its conclusion the double negation
law, which yet pertains to classical logic). This DNP may work as a premise for a next AAA; these
AAAs constitute a chain of AAAs.

v) The conclusion of the final AAA is a universal predicate, ¬¬UP , which represents a possible
resolution for all cases of the stated problem.

vi) At this point, the author of such kind a theory as a matter of fact translates the above predicate
UP into the corresponding affirmative predicate UP . One can suppose that the author thinks to have
already collected enough reasoning evidence to be justified in promoting his conclusion ¬¬UT to the
corresponding affirmative proposition UP , although this change is not allowed by intuitionist logic,
which previously he had adhered to.
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vii) After this step the author considers the affirmative proposition UP as a valid hypothesis for
resolving the given problem; i.e. he assumes this proposition as a new axiom, from which, precisely be-
cause it is affirmative, he can draw by means of classical logic all possible derivations, to be subsequently
tested against reality (Drago 2012).

viii) Previous step apparently represents an application of Leibniz’ principle of sufficient reason;
whose antecedent is itself a universal DNP (“Nothing is without reason”) and the consequent is the
corresponding affirmative proposition (“Everything has a reason”). An author of a theory performs
on a specific predicate of his theory this logical step which formally is the same step performed by
the application of this general principle, i.e. the logical step occurring from the antecedent of Leibniz’
principle of sufficient reason to its consequent: ¬∃x¬P (x) ⇒ ∀xP (x). In formal terms of the square of
opposition PSR, this step translated into the classical thesis A (“S is P”) the intuitionist version of the
main thesis, AI (“not (S is not P)”). Through Dummett’s table (Dummett 1977, p. 29) it is apparent
that previous translation is enough for changing the entire intuitionist predicate logic into the classical
one (e.g. the similar change of thesis EI is obtained by mere negation of thesis AI; the change of thesis
II is obtained by doubly negating thesis AI).

Notice that the translation performed by PSR merely constitutes the inverse translation of the so-
called ‘negative translation’. Yet, whereas the latter one can be always performed under some rules
about the suitable way to add the two negations to a predicate, the application of PSR is valid, as
Markov stated, under two requirements on the doubly negated predicate on which it is applied: it has
to be 1) derived from an AAA and 2) decidable (Markov 1961, p. 5; Drago 2012, sect. 7) for the simple
reason that for passing from a hypothetical world to a real world an author has to be supported not
only by logical arguments, but also reality criteria.

In sum, the sense of a PO theory is the following one: the conclusion of the final AAA suggests
a surmise ¬¬UP ; but a surmise, being a DNP, cannot be accurately tested with reality; instead,
the application of PSR translates this conclusion into an affirmation which may be tested. This step
also changes the theoretical development, previously based upon intuitionist logic, into a deductive
development based upon classical logic in order to test with reality all the possible derivations from the
new principle. If the obtained answers are positive, the entire theory becomes effective. In sum, what
was hypothetical is changed into a suggestion on the real world.

In sum, from the above listed scientific theories playing prominent roles within the history of science
I conclude that there exists a new model of a theoretical organization, which is governed by intuitionist
logic and has to be put on the same par of AO. Hence, a DNP severs two entirely different (scientific)
worlds, i.e. a world of assured truths, as those drawn from assured principles-axioms, from a world of
inductive searching for discovering a new method for solving basic problems. (Drago 2012)

As a consequence, even the definition of negation has to be referred to the theoretical organization
which it belongs to. Within an AO governed by classical logic all doubly negated propositions are
exactly equal to the corresponding affirmative propositions and hence a negative one is mirror opposite
to the corresponding affirmative one; instead, within a PO, governed by intuitionist logic, only the DNP
is not false, whereas both negation or affirmation are at most partially true. Therefore, the common
basic notion of negation presents within the two kinds of logic a radical variation in its value and hence
also in its meaning. This variation gives reason why scholars wanting to define in general terms the
meaning of a negation by only considering the logical operations inside a specific kind of logic (usually,
classical logic) met insurmountable difficulties. (Horn and Wansing 2015)

But also inside intuitionist logic it is difficult to definition negation, so that this question represents
the main basic problem of its philosophy. Brouwer suggested that a negative proposition implies,
through a specific constructive proof, the absurdity. “Brouwer [papers 1923a–c]... expressed negation
as reasoning that leads to an absurdity, or, briefly, as an absurdity.” (Franchella 1994, p. 258. The
book (de Stigt 1990, pp. 238-270) offers a more detailed analysis of the subject). Kolmogorov (1924/25,
§§3–6, pp. 420–422) objected that this formalization implies to have obtained in a preliminary way the
notion of negation either in the law of contradiction or the AAA. After a century, the long debate on this
question is still unresolved (Sundholm 1994; Raatikainen 2004; Raatikainen 2013). The latter author
distinguished three attitudes; i) strict actualism, i.e., to assume the existence of the contradiction proof
in all cases; ii) possibilism, i.e. the proof is no more than possible and iii) an intermediated case of
liberalized actualism. He concluded as follows: “We have examined the three basic choices there are
for the intuitionist theory of truth, the strict actualism, the liberalized actualism and possibilism, and
found all them wanting.” (Raatikainen 2004, p. 143)

I suggest that the question is still unresolved because in the past it was scrutinized with reference to
only AO. By taking into account also PO, the differences about the relationship between intuitionist
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negation and a proof of absurdity is clear. The intuitionist logic of the kind AO, i.e. Heyting’s
axiomatic logic, considers a negation as suggesting the existence of a proof of its absurdity no matter of
the idealistic nature of this claimed existence; whereas (Kolmogorov 1932) formulated logic according
to PO, which in general suggests no more than hypotheses (Drago 2021); hence, about a negation it
suggests a mere hypothesis of the existence of a proof of its absurdity; that is, in a PO theory not always
this proof actually exists. So we have two methods obtaining a same notion, intuitionist negation, but
attributing to it two different meanings. According to the first method the proof may be considered
as idealistically actual; in the second case the proof is no more than possible. In this latter case one
achieves an affirmative conclusion of the theory by changing the kind of theoretical organization by
means of the application of the PSR, i.e. an appeal through to the human rationality. The same occurs
about the existence of the proof related to a negation before the PO of a theory is changed by PSR
into a deductive development: this proof is merely possible; and in order to state a negation one has to
exhibit a constructive proof of its absurdity; instead, after the change, when the theory is governed by
classical logic, the proof is always assumed as actual, albeit also in an idealistic sense.

In conclusion, the nature of the definition of negation is not of an objective kind, or worst, as in
Brouwer’s sense, an absurd of subjective nature, rather it is of a structural kind. It depends from the
kind of theoretical organization which it belongs to.

Rightly Carnap (1943) distrusted the “logical inferentialism”, i.e. the commonly shared opinion that
all logical constants can be uniquely defined through a local analysis of inference relations. Moreover,
in order to give an exact meaning to a negation Dummett‘s interpretation, called “meaning-as-use”,
has to be extended beyond the use of the single inferences, till up to the use of the two theoretical
organizations.

Finally I suggest that, since the problem of what is a negation plays a crucial role inside the theory
of intuitionist logic, one may re-formulate this logic according to a PO whose basic problem is this one.
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CONSERVATIVE TRANSLATIONS FOR NON-DETERMINISTIC SEMANTICS

MARTA FIORI CARONES

In this work, joint with Pawel Pawlowski, we prove that a certain subclass of non-deterministic seman-
tics for two, three and four-valued propositional logic may be conservatively translated to modal logic.
We obtain this result straightforwardly adapting the results of [1] and [2] to fit the non-deterministic
setting. We formulate our results in a more abstract format, in such a way to single out the suffi-
cient properties for a (non-)deterministic n-valued propositional logic to be conservatively translated
to a certain modal logic. Our result is a further step towards the understanding of the features of
non-deterministic semantics. Many related questions are left open.

The notion of conservative translation is widely used in the literature, as a mean to compare the prop-
erties of two logics. We emphasise that a conservative translation preserves the validity of arguments
between two logics, and not only the validity of formulae.

Definition 1 (Conservative translation). A conservative translation between logics L1, L2 is a function
T such that

Γ |=L1 φ⇔ T (Γ) |=L2 T (φ)

for any subset Γ of formulae and any formula φ in the language of L1.

Tamminga and Kooi in [1] provide a conservative translation for three-valued deterministic proposi-
tional logics into the modal logic S5 with full semantics (see Definition 2). Kubyshkina in [2] generalised
this result, providing a conservative translation for four-valued deterministic propositional logics into
universal neighbourhood models (see Definition 3).

The set Prop denote the set of propositional variables. The modal language ML is the standard
modal language with connectives C = {¬,∧,∨,3,2}.

Definition 2 (S5 full model). An S5 full model, or simply S5 model, M is a pair ⟨W,V ⟩, where
W ̸= ∅ is a set of worlds and V : Prop → P(W ) is a valuation.

The satisfaction relation |=S5 for S5 full models is defined according to the standard Kripke seman-
tics, assuming that each world is accessible to any other.

Definition 3 (universal neighbourhood model). A triple M = ⟨W,N, V ⟩ is a universal neighbourhood
model if and only if:

• W ̸= ∅,
• N : W → P(W ),
• V : Prop → P(W ) is a valuation,
• for each w,w′ ∈W , N(w) = N(w′).

The satisfaction relation |=N for universal neighbourhood models is defined as usual for the propo-
sitional connectives, so we limit to recall the clauses for the modal operators:

• M, w |=N 3φ if and only if {w ∈W | M, w ̸|= φ} /∈ N(w)
• M, w |=N 2φ if and only if {w ∈W | M, w |= φ} ∈ N(w).

Despite their difference these two semantics for modal logic share two relevant properties, which
are needed in our proof (and in those of Tamminga and Kooi, and Kubyshkina) of the existence of
a conservative translation from certain non-deterministic propositional logics to certain modal logics.
This fundamental properties are captured in the following definition.

Fully-modalised formulae ML− are the formulae obtained closing under ¬,∧,∨ the set {3p | p ∈
Prop} ∪ {2p | p ∈ Prop}.

Definition 4. A semantics |=Mod for modal logic is k-good, for some k ∈ N, if it satisfies the following
conditions:

(1) the interpretation of the propositional connective is the standard one, given for example by the
Kripke semantics,
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(2) there exist ⃝1p, . . . ,⃝kp fully modalised formulae whose unique propositional variable is p such
that ∀p ∃!i ≤ kM |=Mod ⃝ip,

(3) for every fully-modalised formula φ, M, w |=Mod φ, for some world w, if and only if M |=Mod φ.

The main difference between a deterministic and a non-deterministic semantics is that in the latter
the interpretation of a given connective does not uniquely determine the truth-value of the whole
formula. So, in this context, the assignment of values to propositional parameters does not single out a
valuation defined over the full language. On the opposite, one assignment can be extended into multiple
valuations. Formally non-deterministic (many-valued) semantics are defined as follows.

Definition 5. Let LC be a propositional language. A non-deterministic matrix M (n-matrix) for LC is
a triple ⟨Val, D, O⟩, where:

• Val is a non-empty set of truth-values.
• D ̸= ∅, D ⊆ Val, is the set of designated values.
• O is a set of functions, which for any n-ary connective ✠n of LC contains a corresponding n-ary

function f✠n
: Valn → 2Val \ {∅}.

We say that a n-matrix is k-valued if and only if |Val| = k.
A valuations v in M is a function v : FormLC

→ Val such that, for any sequence of formulae φ1, . . . φn,
v(✠n(φ1, . . . , φn)) ∈ f✠n(v(φ1), . . . , v(φn)). A valuation v is called assignment when its domain is
restricted to the propositional variables, that is v : Prop → Val. A valuation w extends an assignment
v, in symbols w ⊇ v, if and only if, for each p ∈ Prop, w(p) = v(p).

The subclass of non-deterministic semantics for k-valued propositional logics we are interested in is
captured by the following definition.

Definition 6. Let LC be a propositional language and M = ⟨Val, D, O⟩ be a k-valued n-matrix for LC. M
is polarised if, for all assignments v : Prop → Val and for all formulae φ in LC, either for all valuations
w ⊇ v it holds that w(φ) ∈ D or for all valuations w ⊇ v it holds that w(φ) /∈ D.

In its most abstract terms, the translation between propositional formulae and modal formulae used
in [1] and [2] is defined inductively on the complexity of formulae as follows (recall that in the cited
papers the matrix is deterministic).

Definition 7. Let LC be a language, p ∈ Prop, ✠ ∈ LC, and φ,φ1, . . . , φn be formulae in LC. Let
M = ⟨Val, D, O⟩ be a k-valued n-matrix with Val = {1, . . . ,k}. Let also ⃝1p, . . . ,⃝kp be fully modalised
formulae whose unique propositional variable is p. Then, for each i ≤ k, let

(1) i(p) = ⃝ip,
(2) i(✠(φ1, . . . , φn)) =

∨
⟨i1,...,in⟩∈i(f✠)[i1(φ1) ∧ . . . ∧ in(φn)], for

i(f✠) = {⟨i1, . . . , in⟩ ∈ Valn | i ∈ f✠(i1, . . . , in)}
Moreover, we let D(φ) =

∨
i∈D(i(φ)).

For convenience we use the notation D(Γ), for Γ a set of formulae, to indicate that, for each ψ ∈ Γ,
D(ψ) holds.

Thanks to the previous definitions, we can state our result.

Theorem 8. Let |=Mod be a k-good semantics for modal logic. Let LC be a propositional language and
M = ⟨Val, D, O⟩ be a polarised k-valued n-matrix for LC. Let Γ ⊆ LC, φ ∈ LC. Then the following holds:

Γ |=k φ iff D(Γ) |=Mod D(φ)

A simple example witnesses that the above theorem, under the current definition of translation,
does not hold if the n-matrix is not polarised. Though, it remains open whether there exists another
translation which allows to prove a similar result for non polarised matrices too.

Moreover, our abstract formulation of the statement above fits also the determinist case, with the
unique difference that the result holds for all k-valued matrices, not only the polarised once.

Similarly, all the properties which determine whether a modal semantics is k-good are needed for the
theorem to holds under the specific translation. It remains open whether a k-valued non deterministic
semantics can be translated into weaker modal semantics. Notice that this question is open also for the
deterministic case.

Letting ⃝1p = 3p and ⃝2p = ¬3p if the matrix is two-valued, and ⃝1p = 2p, ⃝2p = ¬2p ∧ 3p
and ⃝3p = ¬3p if the matrix is three-valued, one can obtain the following corollary.
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Corollary 9. Let i ∈ {2, 3}. Let LC be a propositional language and M = ⟨Val, D, O⟩ be a polarised
i-valued n-matrix for LC. Let Γ ⊆ LC, φ ∈ LC. Then the following holds:

Γ |=i φ⇔ D(Γ) |=S5 D(φ)

Letting ⃝1p = 2p ∧ 3p, ⃝2p = 2p ∧ ¬3p and ⃝3p = ¬2p ∧ 3p, and ⃝4p = ¬2p ∧ ¬3p if the
matrix is four-valued one can obtain the following corollary.

Corollary 10. Let LC be a propositional language and M = ⟨Val, D, O⟩ be a polarised 4-valued n-matrix
for LC. Let Γ ⊆ LC, φ ∈ LC. Then the following holds:

Γ |=4 φ⇔ D(Γ) |=N D(φ)

Finding suitable modal semantics which allow the translation to hold for k-valued semantics, for
k > 4, is another possible further direction of research.
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ON THE QUANTIFIED VERSION OF THE BELNAP–DUNN MODAL LOGIC

AND SOME EXTENSIONS OF IT

ALEXANDER V. GREFENSHTEIN

The propositional Belnap–Dunn modal logic BK was introduced in [1]; the lattice of its extensions has
been studied in [2, 3, 4]. It can be viewed as conservatively expanding the least normal modal logic K by
adding ‘strong negation’ (∼), which allows us to deal with ‘gaps’ (incomplete information) and ‘gluts’
(inconsistent information). On the other hand, BK can be obtained by adding material implication
(→) and the absurdity constant (⊥) to the logic KFDE (see [5]). The latter is the least modal expansion
of the Belnap–Dunn four-valued logic, also known as first-degree entailment and denoted by FDE (see
[6, 7]). Intuitively, the semantic values used in FDE are:

(1) T, which intuitively stands for ‘true’;
(2) F, which intuitively stands for ‘false’;
(3) N, which intuitively stands for ‘neither true nor false’;
(4) B, which intuitively stands for ‘both true and ‘false’.

Following [1], we present BK in the language

L := {∧,∨,→,2,3,∼,⊥} .

Below we use the following abbreviations: ¬φ stands for φ → ⊥ and φ ⇔ ψ (‘strong equivalence’)
stands for (φ↔ ψ) ∧ (∼ φ↔ ∼ ψ). The corresponding deductive system includes the following axiom
schemata:

CL. all the schemata of propositional classical logic in the language {∧,∨,→,⊥};
K1. (2φ ∧2ψ) → 2 (φ ∧ ψ);
K2. 2 (φ→ φ);
M1. ¬2φ↔ 3¬φ;
M2. ¬3φ↔ 2¬φ;
M3. 2φ⇔ ∼ 3 ∼ φ;
M4. 3φ⇔ ∼ 2 ∼ φ;
SN1. ∼∼ φ↔ φ;
SN2. ∼ (φ→ ψ) ↔ (φ ∧ ∼ ψ);
SN3. ∼ (φ ∨ ψ) ↔ (∼ φ ∧ ∼ ψ);
SN4. ∼ (φ ∧ ψ) ↔ (∼ φ ∨ ∼ ψ);
SN5. ∼ ⊥.

As for the rules, we have modus ponens and the monotonicity rules for 2 and 3:

φ φ→ ψ

ψ
(MP) ;

φ→ ψ

2φ→ 2ψ
(MB) ;

φ→ ψ

3φ→ 3ψ
(MD) .

By BK we mean the least set of L-formulas containing the axioms above and closed under the rules MP,
MB, MD.

Using the canonical models method, it was proved in [1] that BK and some natural extensions of it
are strongly complete w.r.t. appropriate Kripke-style semantics. For instance, a BK-model is a triple
⟨W, v+, v−⟩ that consists of a standard Kripke frame W with two independent propositional valuations
v+, v−. Intuitively, v+ and v− correspond to verification and falsification respectively. So we have two
relations ⊩+ and ⊩− such that for every propositional variable p:

M, w ⊩+ p :⇐⇒ w ∈ v+ (p) ;

M, w ⊩− p :⇐⇒ w ∈ v− (p) .

The logical connective ∼ is treated as a switch between the processes of verifiability and falsifiability:

M, w ⊩+∼ φ :⇐⇒ M, w ⊩− φ;

M, w ⊩−∼ φ :⇐⇒ M, w ⊩+ φ.
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Since in general no restrictions are imposed on the relationship between verifiability and falsifiability,
BK turns out to be paraconsistent. Locally, the truth in BK is four-valued. As well as in FDE, these
four values are T, F, N, and B.

It is important that some natural BK-extensions are closely related to Nelson’s constructive logics N3
(see [8, 9]) and N4⊥. The latter is a modification proposed by S. P. Odintsov of the logic N4 originally

considered in [10]. It was proved in [1] that N3 and N4⊥ can be faithfully embedded into the Belnapian
version BS4 of the modal logic S4 and its three-valued extension B3S4 respectively by providing an
analogue of the Gödel–McKinsey–Tarski translation of intuitionistic logic into S4.

Although the propositional version of BK is quite well studied, nothing has been previously known
about its quantified version. Initially, strong negation appeared in [8] in the first-order setting. It was
an approach to an alternative interpretation of negation in intuitionistic arithmetic. This approach
was supposed to make intuitionistic negation more constructive, similar to the procedure of falsification
instead of the reduction to absurdity. Such arithmetic is now known as Nelson’s arithmetic, NA, defined
no longer on the basis of intuitionistic first-order logic, but on the basis of Nelson’s first-order logic
QN3 (see [11]). Since many non-modal logics can be translated into suitable modal logics, the natural
question arises: can we do the same for Nelson’s logics? Such faithful embeddings can help us in the
study of some metamathematical properties of Nelson’s logics through the transfer of such properties
from the logics in which they are embedded. As we know from the previous paragraph, it can be done
in the propositional case. But since QN3 and QN4⊥ are first-order (see [12] for QN4⊥), we would like

to find suitable first-order modal logics in which QN3 and QN4⊥ can be embedded.
It would be very natural to expect that the connection between BK-extensions and Nelson’s logics

should be appropriately inherited to the first-order case. But since the argument of S. P. Odintsov and
H. Wansing is based on the completeness of BK-extensions, our first goal is to prove the completeness
theorem for the quantified version of BK.

Let σ be a first-order signature. From now on by σ-formulas we mean expressions built up from
the atomic σ-formulas using the connective symbols of L and the quantifier symbols ∀,∃ in the usual
way. Below we use capital letters for σ-formulas in order to emphasize the difference between the
propositional and quantified settings. The deductive system for QBK extends the deductive system for
BK by adding the following four axiom schemata:

Q1. ∀xΦ → Φ (x/t), where t is free for x in Φ;
Q2. Φ (x/t) → ∃xΦ, where t is free for x in Φ;
Q3. ∼ ∀xΦ ↔ ∃x ∼ Φ;
Q4. ∼ ∃xΦ ↔ ∀x ∼ Φ,

and the Bernays rules:

Φ → Ψ
Φ → ∀xΨ (BR1) ; Φ → Ψ

∃xΦ → Ψ
(BR2) .

The axioms Q3 and Q4 were originally considered in Nelson’s work on constructive arithmetic [8] and

were further used in works on Nelson’s first-order logics QN4⊥ and QN3. Now denote by Formσ the
set of all σ-formulas and by Sentσ the set of all σ-sentences (which are formulas with no free variable
occurrences, as usual). Given Γ ⊆ Sentσ and ∆ ⊆ Formσ, we write Γ ⊢QBK ∆ if there is ∆′ ⊆ ∆ such
that the disjunction of ∆′ can be obtained from the elements of Γ∪QBK by means of MP, BR1, and BR2.

One of the specific features of both Nelson’s logics and QBK is the lack of closure under the usual
replacement rule. However, QBK, as well as BK, is closed under the so-called weak replacement rule,
which is rendered as

Ψ ⇔ Φ
Θ(Φ/Ψ) ⇔ Θ

(WR) .

It is also notable that the negative normal form theorem remains true for QBK, i.e. for any σ-formula
Φ there is a σ-formula Φ, in which ∼ stands only before atomic subformulas, such that Φ ⇔ Φ ∈ QBK
(cf. [13]).

QBK-models are first-order Kripke models with expanding domains in which there are two structures
with the same domain at each world w: A+

w for verifiability, and A−
w for falsifiability. For any QBK-model

M, any world w of this model, and any σ-sentence Φ, the relations M, w ⊩+ Φ and M, w ⊩− Φ are
defined by induction on the complexity of Φ. If Φ is atomic, we checking its verifiability and falsifiability
at the world w by looking at A+

w and A−
w respectively. The case of strong negation is considered as
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above. Below are the remaining cases:

M, w ⊩+ Φ ∧Ψ :⇐⇒ M, w ⊩+ Φ and M, w ⊩+ Ψ;

M, w ⊩− Φ ∧Ψ :⇐⇒ M, w ⊩− Φ or M, w ⊩− Ψ;

M, w ⊩+ Φ ∨Ψ :⇐⇒ M, w ⊩+ Φ or M, w ⊩+ Ψ;

M, w ⊩− Φ ∨Ψ :⇐⇒ M, w ⊩− Φ and M, w ⊩− Ψ;

M, w ⊩+ Φ → Ψ :⇐⇒ M, w ⊮+ Φ or M, w ⊩+ Ψ;

M, w ⊩− Φ → Ψ :⇐⇒ M, w ⊩+ Φ and M, w ⊩− Ψ;

M, w ⊩+ 2Φ :⇐⇒ for each u ∈W, if wRu, then M, w ⊩+ Φ;

M, w ⊩− 2Φ :⇐⇒ there exists u ∈W such that wRu and M, w ⊩− Φ;

M, w ⊩+ 3Φ :⇐⇒ there exists u ∈W such that wRu and M, w ⊩+ Φ;

M, w ⊩− 3Φ :⇐⇒ for each u ∈W, if wRu, then M, w ⊩− Φ;

M, w ⊩+ ∀xΦ :⇐⇒ for each a ∈ Aw it holds that M, w ⊩+ Φ (x/a) ;

M, w ⊩− ∀xΦ :⇐⇒ M, w ⊩− Φ (x/a) for some a ∈ Aw;

M, w ⊩+ ∃xΦ :⇐⇒ M, w ⊩+ Φ (x/a) for some a ∈ Aw;

M, w ⊩− ∃xΦ :⇐⇒ for each a ∈ Aw it holds that M, w ⊩− Φ (x/a) .

The semantic consequence for QBK is defined in the standard way, using the relation ⊩+. We prove
that QBK is strongly complete w.r.t. this Kripke-style semantics:

Theorem 1. For any Γ ⊆ Sentσ and ∆ ⊆ Formσ,

Γ ⊢QBK ∆ ⇐⇒ Γ ⊨QBK ∆.

The proof of strong completeness of QBK is carried out by modifying the canonical models method
for first-order modal logics (see [14]). In fact, the resulting modification can be successfully applied to
prove the strong completeness of some others quantified modal logics with strong negation. Among the
interesting BK-extensions are:

(1) those obtained by excluding either gaps, gluts or both;
(2) those obtained by imposing restrictions (expressible by modal formulas) on accessibility relations

in Kripke frames.

Syntactically, the following axiom schemata correspond to the exclusion of gaps and gluts respectively:

ExM. φ ∨ ∼ φ;
Exp. ∼ φ→ (φ→ ψ).

Intuitively, ExM is for excluded middle, and Exp is for explosion. As for extensions of the second kind,
they are obtained by adding standard axiom schemata expressing suitable properties of accessibility
relations. In particular, denote QBK+ {Exp} and QBK+ {ExM} by QB3K and QBK◦ respectively. We
prove the following

Theorem 2. QB3K and QBK◦ are strongly complete w.r.t. appropriate Kripke-style semantics.

For the quantified analogs of extensions of the second kind we also obtain similar results. In partic-
ular, we prove the strong completeness theorems for the quantified analogs of BS4 and B3S4. Let us
denote these by QBS4 and QB3S4 respectively.

In conclusion, we generalize the result that Nelson’s logics can be faithfully embedded into appro-
priate BK-extensions to the first-order setting as follows:

Theorem 3. The logics QN3 and QN4⊥ can be faithfully embedded into QB3S4 and QBS4 respectively.
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ON MODAL FRAGMENTS OF SOME TENSE LOGICS

OLEG M. GRIGORIEV

The relations between theories formulated in different languages form a subject of numerous research
works. In particular simulation results concerning theories in distinct modal languages are also well
known (see, eg. [1]). I would like to focus here on some specific issue which arises from studying possible
connections between modal and tense operators in formal languages or, more broadly, modal concepts
and concepts of time in natural languages.

Historically there are at least two conventional definitions of modal operators in the context of tense1

logic. One of this, let us denote it as D1, postulates 2A ≡ GA ∧ A and 3A ≡ FA ∨ A. The second
one, D2, engages past operators as well: 2A ≡ HA ∧ A ∧ GA and 3A ≡ PA ∨ A ∨ FA. In [3, 4]
the following definition D3 is suggested: 2A ≡ HGA and 3A ≡ PFA. Thus a question about modal
fragments of tense logics equipped with one of these definitions naturally arises. Formally, a modal
logic ML constitutes a modal fragment of a tense logic TL + Di (where Di is a definition of modal
operators) when TL + Di is a conservative extension of ML. Some results concerning the modal
fragments of the most basic tense logics enriched by definitions D1, D2 and D3 can be found in [3, 4].
For example, modal system B (KTB in alternative notation) is a modal fragment of tense systems
Kt+D2 (likewise Kt4+D2, Kt4+ lin-p+D2), while S5 is a modal fragment of Kt4.3+D2 (likewise
Kt4.3+ noend+ nobeg+D2, Kt4.3+ noend+ nobeg+ dense+D2). On the other hand B is a modal
fragment of Kt + nobeg + D3, while S5 is a modal fragment of Kt4 + lin-p + nobeg + D3 (and also
Kt4.3+D3, Kt4.3+ noend+ nobeg +D3, Kt4.3+ noend+ nobeg + dense+D3)2.

As is stated in [3], no standard tense logic contains as its modal fragment a modal system which is
located between S4 and S5. This observation motivates a certain revision of fundamentals of a minimal
tense logic system Kt. From semantic point of view this revision states that past (RP ) and future (RF )
accessibility relations are not considered as inversions of each other as they usually are. Specifically,
the following frame conditions are stipulated:

RF (x, y) ⇒ RP (y, x),(1)

RF (x, y) ∧RP (y, z) ⇒ RF (x, z) ∨RP (x, z) ∨ x = z.(2)

The condition (1) corresponds to one of the interconnections axioms of Kt, namely A→ GPA. The
condition (2) corresponds to schema FPA→ PA∨A∨FA. Thus the standard interrelation conditions
between past and future now changed, so the resulting logic of a class of frames, satisfying (1) and
(2) is different from Kt. For this reason it is instructive to distinguish past and future fragments and
interconnection conditions of a tense logic. Following [4] let us denote the conditions (1) and (2) by
S and represent a resulting logic as a pair ⟨KP,KF ⟩S , where KP and KF stand for past and future
parts of the logic (each can be considered as a notational variant of a modal system K). In [3] it is
proved that ⟨KP,KF ⟩S is axiomatized by (in addition to the classical tautologies) the following set of
schemata (denoted as S): G(A → B) → (GA → GB), H(A → B) → (HA → HB), A → GPA and
FPA→ PA ∨A ∨ FA. The rules of inference are MP and necessitations for G and H.

By some informal reasons, the system ⟨KP,KF ⟩S was not considered as being interesting with
respect to its modal fragments. It was expanded by a schema A → PFA (which relaxes deterministic
flavor of A→ HFA) along with HA→ PA and a corresponding semantic condition

(3) ∃y(RP (x, y) ∧RF (y, x)).

The resulting system is denoted as ⟨DP,KF ⟩R, where R = S+A→ PFA, DP = KP +HA→ PA,
R = (1) + (2) + (3). This is the basis for constructing a family of tense logics enriched by D3 and
containing some commonly known modal systems like S4.2, S4.3.

1I prefer to use an old fashioned term “tense logic” rather then “temporal logic” since the languages of the systems

considered here based on Prior-style tense modalities.
2To save space I use the notations for well known axiom schemata as they given in [2].
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Nevertheless, it seems natural to consider even more unusual tense logic of a class of frames, specified
by the following pair of conditions:

RP (x, y) ∧RF (y, z) ⇒ RP (x, z) ∨RP (x, z) ∨ x = z,(4)

RF (x, y) ∧RP (y, z) ⇒ RF (x, z) ∨RP (x, z) ∨ x = z.(5)

Let us denote (4)+(5) by Q. The corresponding pair of axiom schemata, FPA → PA ∨ A ∨ FA and
PFA → PA ∨ A ∨ FA, is denoted by Q. It can be verified that logic ⟨KP,KF ⟩Q is determined by a
class of frames satisfying the conditions (4) and (5).

Now we can determine a modal fragment of the system ⟨KP,KF ⟩Q+Di (i ∈ 1, 2, 3) itself and study
the modal fragments of its successive modifications. It is clear that there are lots of possible extensions
of the basic system ⟨KP,KF ⟩Q with respect to its “internal” parts KP and KF and interconnection
conditions. On the one hand we can incorporate into “internal” parts the common systems of tense
logic representing different properties of flow of time, on the other hand interconnection conditions can
help to capture a particular modal system as a modal fragment. Here we inspect just some examples
leaving the larger picture for a lengthy paper.

Let us say a few words concerning the method of proving statements about modal fragments in
general. There are at least three ways of addressing this problem. One of these methods is purely
semantical (and is often used in [3]), the second one is based on embedding techniques. Finally one can
compare theories using definitional approach (which in some sense is related to embeddings but do not
use recursive definitions for translating the whole language). The brief idea of the latter is as follows.
Suppose that there are two theories, ML and TL, formulated in different languages. Let DTL denote
the definition in ML the terms of TL absent from ML. Likewise DML is a definition of terms from
ML within TL. Now it can be shown that TL +DML is a conservative extension of ML if there is a
proof of two assertions: (α) ML is a subsystems of TL +DML and (β) TL +DML is a subsystem of
ML +DTL. Is is convenient to use axiomatic representations of the systems to prove (α) and (β). It
is also important to note that one must prove definitions DML within ML + DTL to accomplish the
proof for the proposition (β). Moreover, if some system TL1 +DML is an extension of TL+DML but
contained in ML+DTL, then TL1 +DML is a conservative extension of ML. Next we formulate some
results concerning the basic system and some of its extensions.

Theorem 1. The following statements hold:

(1) K is a modal fragment of any tense system TL such that

⟨KP,KF ⟩Q +D3 ⊆ TL and

TL ⊆ K+GA ≡ A+HA ≡ 2A.

(2) S4 is a modal fragment of any tense system TL such that

⟨KP,KF4⟩Q +D1 ⊆ TL and

TL ⊆ S4+GA ≡ 2A+HA ≡ 2A.

(3) S4 is a modal fragment of any tense system TL such that

⟨KP4,KF4⟩Q +D2 ⊆ TL and

TL ⊆ S4+GA ≡ 2A+HA ≡ 2A.

(4) K4 is a modal fragment of any tense system TL such that

⟨KP,KF4⟩Q +D3 ⊆ TL and

TL ⊆ K4+GA ≡ A+HA ≡ 2A.

Note that some modifications of KP and KF parts are necessary, while interconnection conditions
are constant. But in more complex cases we have to modify the latter conditions as well. Let us consider
the case of K4.3 system. We construct a tense logic equipped by D3 which contains K4.3 as a modal
fragment.

Recall that DP4 means KP + HA → PA + HA → HHA. We also use the standard tense logic
versions of the axiom 3, that is DP4.3 = DP4 + H(A ∧ HA → B) ∨ H(B ∧ HB → A), KF4.3 =
KF +GA→ GGA+G(A ∧GA→ B) ∨G(B ∧GB → A). Next we replace Q with the following three
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schemata:

F (B ∧ PA) → PA ∨A ∨ F (A ∧ FB),(6)

P (B ∧ FA) → FA ∨A ∨ P (A ∧ PB),(7)

FA ∧ PB → P (B ∧ FA).(8)

Let Q3 to denote this modified list of expressions. The corresponding first order frame conditions
can be readily seen:

RF (x, y) ∧RP (y, z) → (RP (x, z) ∨ x = z ∨ (RF (x, z) ∧RF (z, y))),(9)

RP (x, y) ∧RF (y, z) → (RF (x, z) ∨ x = z ∨ (RP (x, z) ∧RP (z, y))),(10)

RP (x, y) ∧RF (x, z) → RF (y, z).(11)

Let us put Q3 = (9) + (10) + (11) in addition to ∀x∃yRP (x, y), transitivity for RP and RF along with
conditions for past and future linearity with respect to the corresponding relations, that is RP (x, y) ∧
RP (x, z) → RP (y, z)∨ y = z ∨RP (z, y) and its mirror image for F . It can be verified that a tense logic
⟨DP4.3,KF4.3⟩Q3 is determined by the class of frames characterized by conditions Q3. Now we have

Theorem 2. K4.3 is a modal fragment of any tense system TL such that

⟨DP4.3,KF4.3⟩Q3 +D3 ⊆ TL and

TL ⊆ K4.3+GA ≡ A+HA ≡ 2A.

As one can see, the study of modal fragments of tense logics may follow two general strategies. On
the one hand one can try to capture a modal logic by some, more or less artificially constructed, tense
logic. More difficult and challenging problem is to find the modal fragments of some standard tense
systems such as linear time logics of naturals, integers, rationals or reals extended with some definition
of modal operators.
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EXPERIMENTAL PROVER FOR TOPE LOGIC

NIKOLAI KUDASOV

Tope logic comprises the top two layers of Riehl and Shulman’s type theory for synthetic ∞-
categories [3] (we will refer to this type theory as RSTT1). Reasoning in higher categories involves
(higher-dimensional) diagrams, and, in RSTT, cubes and topes provide a synthetic approach to making
shapes of diagrams and reason about relationships between such shapes, most importantly, involving
inclusion of shapes.

The tope logic consists of two layers — cube layer and tope2 layer. The cube layer is an intuitionistic
type theory with products, providing abstract spaces to work in. For example, cube 2 is a directed
interval with two distinct points 0 : 2 and 1 : 2. The interval is abstract in the sense that a point t : 2
is not necessarily one of 0 and 1. The directedness of the interval 2 is specified in the tope layer:

x : 2 | · ⊢ (x ≤ x)

x : 2, y : 2, z : 2 | (x ≤ y), (y ≤ z) ⊢ (x ≤ z)

x : 2, y : 2 | (x ≤ y), (y ≤ x) ⊢ (x ≡ z)

x : 2, y : 2 | · ⊢ (x ≤ y) ∨ (y ≤ x)

x : 2 | · ⊢ (0 ≤ x)

x : 2 | · ⊢ (x ≤ 1)

· | (0 ≡ 1) ⊢ ⊥

Proof search for full intuitionistic logic with equalities (LJ≃) has been studied by Voronkov [5]. However,
tope logic is a two-layer formal system and we cannot apply tools for LJ≃ immediately. Additionally,
tope logic appears to have a simpler core so might admit a more straightforward algorithm.

The tope layer allows then to define restrictions on such abstract spaces, effectively carving out
shapes inside cubes. Topes are given as formulas in intuitionistic logic over the cube layer (i.e. under
a context with point variables). Some common examples of 2- and 3-dimensional shapes are presented
in Fig. 1.

· ·

·

(a) 2-dim simplex, notated ∆2:

{⟨t, s⟩ : 2× 2 | s ≤ t}

· ·

·

(b) Boundary of ∆2, notated ∂∆2:

{⟨t, s⟩ : 2×2 | s ≡ 0∨ s ≡ t∨ t ≡ 1}

· ·

·

·

(c) A 3-dim horn, notated Λ3
2:

{⟨t1, t2, t3⟩ : 23 | (t3 ≡ 0∧ t2 ≤ t1)∨ (t3 ≤
t2 ∧ t2 ≡ t1) ∨ (t3 ≤ t2 ∧ t1 ≡ 1)}

Figure 1. Examples of shapes.

Starting with different basic cubes and topes, we can construct different kinds of diagrams. In
particular, Riehl and Shulman [3, Section 3] develop a simplicial type theory for synthetic ∞-categories
starting from a directed interval tope, but also mention a possible formulation for a cubical type
theory. The cubical interval is used together with the simplicial interval in the work of Streicher and
Weinberger [4].

1Riehl and Shulman’s Type Theory
2Riehl and Shulman use the term “tope”, thinking of topes as “polytopes embedded in cubes”, and we inherit their

terminology
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Taking the first two layers of RSTT and varying basic cubes and topes we obtain a family of tope
logics. The cube layer is a simple intuitionistic logic with products, possibly extended with user-defined
point constructors. The tope layer is an intuitionistic logic over the cube layer, possibly extended with
user-defined axioms. Importantly, tope layer includes an equality tope, which is seen from the type
layer in RSTT as definitional equality.

Well-formedness of terms in RSTT depends upon proofs in the tope layer. Such proofs are often
left implicit on paper and are considered trivial. However, when automating reasoning in RSTT, these
checks have to be performed by a computer, which motivates design of a formal system to prove theorems
in tope logics.

In this paper, we report on a work-in-progress for developing an experimental prover for tope logic
(in general, and for special cases of simplicial and cubical logic), extensible with user-defined cubes and
topes, and discuss preliminary results.

Experimental Theorem Prover

We have implemented an experimental prover for the tope logic, with user-defined cubes and topes.
We used Haskell programming language with heavy use of logict library [2], for backtracking and
interleaving computations used for the proof search. The source code of the implementation is available
on GitHub at https://github.com/fizruk/simple-topes and an interactive online version of the
prover is available at https://fizruk.github.io/simple-topes/.

The theorem prover supports tope logic as defined in RSTT [3, Figures 1 and 2] as well as user-
defined cubes and topes. For example, the definitions for simplicial logic [3, Section 3] are presented in
Fig. 2.

The prover currently implements a version of reasoning using sequent calculus for tope logic with a
cut rule, to admit arbitrary user-defined inference rules, as well as (a limited form of) equality saturation
used for the equality tope (≡). We note the following properties of the experimental implementation:

(1) User-defined axioms are formulated in the form of sequent calculus inference rules.
(2) The order of the rules affects the proof search.
(3) All user-defined rules as considered by the cut rule, except

(a) rules where right hand side is a tope (propositional) variable or
(b) rules where right hand side is already a trivial consequence of current premises in LJ≃.

The last heuristic speeds up proof search significantly, allowing to avoid unnecessary branching when
applying rules such as excluded middle for the inequality tope.

A simplified version of reasoning in tope logic has also been integrated in an experimental proof
assistant for synthetic ∞-categories, rzk (available at https://github.com/fizruk/rzk). A work-
in-progress formalisation of Riehl and Shulman’s original paper [3] is available at https://github.

com/fizruk/sHoTT. The current implementation of tope logic in rkz has proven sufficient for these
formalisations. In the future, the project aims to encompass formalisations of synthethic fibered ∞-
categories from the work of Buchholtz and Weinberger [1] as well as explore the non-simplicial part of
the type theory with shapes, such as cubical type theory [3, Remark 3.2]. For these, rzk is planned to
be extended with support for user-defined cubes and topes.

An interesting feature of rzk proof assistant is the ability to render diagrams that correspond to
certain proof terms and theorem. In Fig. 3, the proof term is constructed by taking a subshape corre-
sponding to an internal face of a prism. In the formalisation, this is given by an mapping 2D coordinates
(t, s) into 3D coordinates ((t, t), s). The diagram on the right highlights the embedding in red.
To implement such highlighting, it is necessary to understand, which parts of the 3D space correspond
to the image of this mapping. In general, given a mapping f : I → J and a constraints t : I ⊢ ψ tope
and s : J ⊢ ϕ tope, we want to solve s : J | · ⊢ ∃(t : I). ψ ∧ ϕ. Thus, there is a need to extend the
logic and its solvers with support for existential quantification. Currently, the implementation in rzk
relies on a saturation-based heuristic to solve such cases of existential quantification. However, a proper
support for existential quantification is required in future.

The experimental provers currently lack a proper formalisation for the proof search algorithm with
any soundness and completeness results. The implementation also does not include type checking at
the moment, which would help with directing and optimising the proof search. Finally, representation
of propositions is not efficient and can be changed to improve overall performance of the prover.

https://github.com/fizruk/simple-topes
https://fizruk.github.io/simple-topes/
https://github.com/fizruk/rzk
https://github.com/fizruk/sHoTT
https://github.com/fizruk/sHoTT
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Figure 2. Definition of a directed interval cube 2, inequality tope (≤), and corre-
sponding axioms in sequent calculus form.

Figure 3. A definition in rzk and a corresponding automatically rendered 3D dia-
gram.
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MANY-DIMENSIONAL MODAL LOGICS FOR NEIGHBORHOOD SEMANTICS

ANDREY KUDINOV

In 2003 a very influential book called “Many-Dimensional Modal Logics: Theory and Applications”
was published [2]. This book mainly considered modal logics in the context of Kripke semantics.
But in mathematics, computer science and philosophy not all structures can be presented as Kripke
frames. In resent year more and more researchers turn their attention to topological and neighborhood
semantics. These semantics are more suited for modeling all sorts of continuous processes and structures.
Unfortunately, many-dimentional modal logics in the context of topological and neighborhood semantics
is still very underresearched.

A neighborhood frame (or an n-frame) is a pair X = (X, τ), where X is a nonempty set and τ :

X → 22
X

is the neighborhood function of X . Sets from τ(x) are called neighborhoods of point x. A
neighborhood model (n-model) is a pair M = (X , V ), where X = (X, τ) and V is a valuation on X, i.e.
a function from the set of all propositional variables to set 2X . The truth relation |= on n-models for
logical connectives is defined in the classical way and for modalities the definition is the following:

M,x |= 2A ⇐⇒ ∃U∀y(y ∈ U ∈ τ(x) ⇒M,y |= A).

A formula A is valid on an n-frame X if it is true at all points on all models based on X (Notation:
X |= A). For a class of n-frames C formula A is valid on C if ∀X ∈ C(X |= A). The set of all formulas
that are valid on a given frame (a class of frames) is called the logic of this frame (class of frames).
Notations: Log(F ) and Log(C) respectively.

Any logic of a Kripke frame is normal, i.e. it contains axiom 2(p → q) → (2p → 2q) and is closed
under the necessitation rule ( A

2A ). Whereas logic of an n-frame is not necessarily normal. For it to be
normal τ(x) has to be a filter for any x ∈ X . Filter is a nonempty set of sets closed under intersections
and supersets. From now on we will assume that all n-frames are like this.

N-frames is a more general notion then a Kripke frame. Given a Kripke frame F = (W,R) we can
construct an n-frame N (F ) = (W, τR), such that τR(x) = {U ⊆W |R(x) ⊆ U }. Then the validity of
formulas will be preserved by this operation.

One of the natural construction that “increase” dimension is the product. For two Kripke frames F1 =
(W1, R1) and F2 =W2, R2 their product is a Kripke frame with 2 relations F1×F2 = (W1×W2, R

h
1 , R

v
2),

where

(x, y)Rh
1 (z, t) ⇐⇒ xR1z & y = t;

(x, y)Rv
2(z, t) ⇐⇒ x = z & yR2t.

In a similar way we can define the product of two n-frames. Let X1 = (X1, τ1) and X2 = (X2, τ2) be
two n-frames. Their product is an n-frame with 2 neighborhood functions:

X1 ×X2 = (X1 ×X2, τ
h
1 , τ

v
2 ), where

τh1 (x1, x2) = {U ⊆ X1 ×X2 | ∃V (V ∈ τ1(x1) & V × {x2} ⊆ U)} ;
τv2 (x1, x2) = {U ⊆ X1 ×X2 | ∃V (V ∈ τ2(x2) & {x1} × V ⊆ U)} .

In frames with several relations (neighborhood functions) we use modalities with corresponding sub
indexes.

For two unimodal logics L1 and L2, we define the n-product of them as a logic with two modalities:

L1 ×n L2 = Log
(
{X1 ×X2 | X1 |= L1 & X2 |= L2 }

)
.

The fusion of L1 and L2 is the minimal 2-modal logic L1 ∗ L2 axiomatized with axioms of L1 rewritten
with 21 and axioms of L2 rewritten with 22.

Let KF = {N (F ) |F −Kripke frame}. The product of modal logics defined in [2] and earlier in [10]
can be defined as an n-product with restrictions on the class of n-frames:

L1 × L2 = Log
(
{X1 ×X2 | X1 |= L1,X2 |= L2 & X1,X2 ∈ KF }

)
.
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If we restrict only one component of the product we get a mixed neighborhood-Kripke product (cf. [6]):

L1 ×nk L2 = Log
(
{X1 ×X2 | X1 |= L1,X2 |= L2 & X2 ∈ KF }

)
.

This observation shows that

L1 ∗ L2 ⊆ L1 ×n L2 ⊆ L1 ×nk L2 ⊆ L1 × L2.

It worth noting that these definitions are correct for monotone logics. Product of n-frames first appeared
in [9], where Sano studied the product of hybrid monotone modal logics, i.e. modal logics with nominals
and satisfaction operators @i. Nobody studied products of pure monotone modal logics jet.

Topological semantics is a particular case of neighborhood semantics for extensions of S4. For a
topological space X = (X,T ) we can define neighborhood function

τ(x) = {U | ∃U ′ ∈ T (x ∈ U ′ ⊆ U)} .
The truth relation on X and on X = (X, τ) will be the same. First paper where topological product
was defined was [11].

The derivational topological semantics (d-semantics) is also a particular case of neighborhood se-
mantics. For a topological space X = (X,T ) we can define neighborhood function

τd(x) = {U | ∃U ′ ∈ T (x ∈ U ′ & U ′ \ {x} ⊆ U)} .
The truth relation on X with d-semantics and on X = (X, τd) will also be the same. The results on the
d-products of modal logics (the d-logic of the products of topological spaces) can be found in [5].

Let us put all known results from [1, 4, 6, 7, 11] into a table:

L1 L2 L1 ×n L2 L1 ×nk L2 L1 × L2

S4 S4 S4 ∗ S4 S4 ∗ S4+ chr + com→ S4 ∗ S4+ chr + com↔

S4 S5 S4 ∗ S5+ chr + com→ S4 ∗ S5+ chr + com→ S4 ∗ S5+ chr + com↔

S5 S5 S5 ∗ S5+ chr + com↔ S5 ∗ S5+ chr + com↔ S5 ∗ S5+ chr + com↔

HTC-logic +♢⊤ HTC logic +♢⊤ L1 ∗ L2 L1 ∗ L2 + chr + com→ L1 ∗ L2 + chr + com↔

HTC logic HTC-logic L1 ∗ L2 +∆ L1 ∗ L2 + chr + com→ +∆1 L1 ∗ L2 + chr + com↔

HTC logic +♢⊤ HTC-logic L1 ∗ L2 +∆2 L1 ∗ L2 + chr + com→ L1 ∗ L2 + chr + com↔

S4.1 S4 S4.1 ∗ S4+Amk2 ? ?

Notation:

∆1 = {ϕ→ 21ϕ |ϕ is closed and 21-free} , com→ = 2122p→ 2221p,

∆2 = {ψ → 22ψ |ψ is closed and 22-free} , com↔ = 2122p↔ 2221p,

∆ = ∆1 ∪∆2, chr = ♢122p→ 22♢1p,

S4.1 = S4+♢(♢p→ 2p) Amk2 = ♢122(♢1p→ 21p).

A logic L is called HTC-logic (Horn preTransitive Closed logic) if it can be axiomatized by closed
formulas and formulas of the type 2p→ 2np or p→ 2np.

Some results for nk-products have not published jet.
Other lines of research related to the many-dimensional modal logics is the quantified modal logics

and the intuitionistic modal logics. This happens because the two-dimensional structures are well suited
for semantics for these logics.

In [8] it was proved that for any HTC-logic L its quantified counterpart QL is complete w.r.t. n-frames
with constant domain. This is quite surprising since QL is not complete w.r.t. Kripke frames with
constant domain and only w.r.t. to Kripke frames with expanding domains.

For intuitionistic modal logic, our work is in progress but we expect similar completeness results.
Another important aspect of this research is the complexity of the logics. In [3] it was proved that

the Kripke frame based products of transitive modal logics in many cases (e.g. S4,K4,S4.1 etc.) are
undecidable. On the other hand, the fusion of decidable logics is decidable (see [2]). Adding ∆ preserves
the decidability of logic. So the n-products of logics S4,K4,D4 are decidable.

Acknowledgements. The work was partially supported by RSF (Project No. 21-11-00318)
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SOME ALGEBRAIC SEMANTICS FOR SUPERINTUITIONISTIC FIRST-ORDER

LOGICS

STEPAN G. KUZNETSOV

1. Short Abstract

There is a variety of different semantics for intuitionistic and superinuitionistic predicate logics. The
Algebraic Kripke sheaf semantics was introduced in [2] by N.-Y. Suzuki. The semantics of Heyting-
valued structures was introduced in [3] by A. Dragalin and was further studied in [1] by D. Gabbay,
V. Shehtman and D. Skvortsov. This work shows that Suzuki’s algebraic Kripke sheaf semantics is
reducible to Heyting-valued structure semantics. This means that a sheaf of algebras in Suzuki’s model
can be “substituted” by a single algebra which is associated with the root of that model.

2. Algebraic Kripke Sheaf Semantics

This semantics was defined by N.-Y. Suzuki in [2]. Consider a (super-)intuitionistic predicate logic
without equality with universal and existential quantifiers. Then we define an Algebraic Kripke
Sheaf model as follows:

Definition 1. Let M = ⟨M,≼⟩ be a partially ordered set with the least element 0M ∈ M and D be a
covariant functor from M to the category of all sets denoted by SET , which means that:

• for every a ∈M the set D(a) is non-empty;
• for every a, b ∈M with a ≼ b there exists a mapping Dab : D(a) → D(b);
• Daa = idD(a) for every a ∈M ;
• Dab ◦Dbc = Dac for every a, b, c ∈M with a ≼ b ≼ c.

The functor D is called a domain-sheaf over M , the triple ⟨M,≼, 0M ⟩ is called a Kripke base and
the pair ⟨M , D⟩ is called a Kripke sheaf.

For each a, b ∈ M and d ∈ D(a), element Dab(d) is said to be an inheritor of an element d at the
point b. For each sentence A assigned with elements from D(a) and each element b ∈ M such that
b ≽ a we define an inheriting sentence Aab obtained by replacing every occurrence of every u ∈ D(a)
by its inheritor v = Dab(u) at (b).

Definition 2. Let H denote a category of non-degenerate complete Heyting algebras and complete
monomorphisms. Consider a Kripke sheaf ⟨⟨M,≼, 0M ⟩, D⟩. A contravariant functor P from a Kripke
base M = ⟨M,≼, 0M ⟩ to H is called a Heyting-valued-sheaf over M and K = ⟨M , D, P ⟩ is called an
algebraic Kripke sheaf.

Definition 3. Let AFD(a) be a set of all atomic sentences in the language extended with elements of the
set D(a) for some a ∈M . A mapping V which assigns each pair (a,A) where a ∈M and A ∈ AFD(a)

to an element of P (a) is said to be a valuation on ⟨M , D, P ⟩ if for every a, b ∈ M with a ≼ b we have
V (a,A) ≤ Pab (V (b, Aab))

Definition 4. We extend V to a mapping which assigns an element of non-degenerate complete Heyting-
Algebra algebra P (a) = ⟨P (a),∨P (a),∧P (a),→P (a), 0P (a), 1P (a)⟩ to each pair of an element a ∈ M and
a sentece A of the language extended with constants from D(a) inductively as follows:

• V (a,A ∧B) = V (a,A) ∧P (a) V (a,B);
• V (a,A ∨B) = V (a,A) ∨P (a) V (a,B);

• V (a,A ⊃ B) =
∧P (a)

b:a≤b Pab

(
V (b, Aab) →P (b) V (b, Bab)

)
;

• V (a,¬A) =
∧P (a)

b:a≤b Pab

(
V (b, Aab) →P (b) 0P (b)

)
;

• V (a,∀xA(x)) =
∧P (a)

b:a≤b

∧P (a)
v∈D(a) Pab (V (b, Aab(v)));

• V (a,∃xA(x)) =
∨P (a)

v∈D(a) V (a,A(v)).
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Definition 5. A pair ⟨K, V ⟩ is called an algebraic Kripke sheaf model.

Definition 6. A formula A is said to be true in an algebraic Kripke sheaf model ⟨K, V ⟩ if V
(
0M , Ā

)
=

1, this fact is denoted as ⟨K, V ⟩ |= A. A formula A is said to be valid in an algebraic Kripke sheaf K if
it is true for every valuation V on K.

3. Heyting-valued structure semantics

The second semantics were originally introduced in [3] and later studied in [1]. Heyting-valued
structure semantics are defined for (super-)intuitionistic logics with universal and exponential quan-
tifiers and equality as follows:

Definition 7. Let Ω be a complete Heyting algebra, D a set, and E : D2 → Ω a mapping such that for
any a, b, c ∈ D :

E(1) E(a, b) = E(b, a);
E(2) E(a, b) ∧ E(b, c) ≤ E(a, c);
E(3)

∨
a∈D E(a, a) = 1.

A triple ⟨Ω, D,E⟩ is called an Ω-valued structure or a Heyting-valued structure (H.v.s) over Ω. A
set D is called an individual domain and its elements are called individuals. A mapping E : D2 → Ω is
called a measure of equality.

Let’s extend a measure of equality to tuples a, b ∈ Dk in the following way:

E(a, b) := E (a1, b1) ∧ · · · ∧ E (ak, bk)

and introduce abbreviations:

Eab := E(a, b), Ea := Eaa.

Then, by the lemma 4.1.4 from [1] we have:

Proposition 8 ([1]). Every measure of equality E has the following properties:

(1) E(a, b) ≤ E(a, a);
(2) Eab ≤ Eaa;
(3) Eab ∧ Ebc ≤ Eac;
(4)

∨
a∈Dk E(a) = 1.

Definition 9. A valuation on a H.v.s F = ⟨Ω, D,E⟩ is a map φ : AFD → Ω such that for every n-ary
predicate P from the language and a, b ∈ Dn such that a =i b (i.e. ak = bk for every k ̸= i):

φ(P (a)) ∧ E (ai, bi) ≤ φ(P (b)).

Definition 10. Quite naturally we extend the valuation φ to all modal (and intuitionistic) D-sentences
(i.e. sentences of the language extended with constants from D) in the following way:

(1) φ(⊥) := 0,
(2) φ(a = b) := E(a, b);
(3) φ(A ∨B) := φ(A) ∨ φ(B);
(4) φ(A ∧B) := φ(A) ∧ φ(B);
(5) φ(A ⊃ B) := φ(A) → φ(B);
(6) φ(∃xA) :=

∨
d∈D(Ed ∧ φ(A(d)));

(7) φ(∀xA) :=
∧

d∈D(Ed→ φ(A(d))).

Definition 11. The pair ⟨F,φ⟩ of a H.v.s. F and a valuation φ is said to be an algebraic model. A
formula A is said to be true in this algebraic model if φ(Ā) = 1, this fact is denoted as ⟨F,φ⟩ |= A. A
formula A is said to be valid in a structure F if it is true in every model over F .

4. Results

Our research shows that Suzuki Algebraic Kripke Sheaf semantics for the language without equality
is reducible to the Heyting-valued structure semantics for a language with equality.

Theorem 12. For every Suzuki Algebraic Kripke Sheaf S = ⟨M,D,P ⟩ and every valuation V on S
there exists a Heyting-valued structure F = ⟨Ω, D,E⟩ and a valuation φ on F which has the same set
of true formulas.



SOME ALGEBRAIC SEMANTICS FOR SUPERINTUITIONISTIC FIRST-ORDER LOGICS 45

As the valuation on Algebraic Kripke sheaves is defined in a contravariant manner in order to check
the validity of a formula in a model S := ⟨⟨M , D, P ⟩, V ⟩ we can only look at the valuation at the root
point 0M as the valuation at every other point of the frame can be traced down to the root algebra
P (0M ).

An idea of checking the formula valuation only at the root algebra can be encapsulated within the
construction of an algebra of monotonically non-decreasing maps from M to P (0). The equivalency
between the class of Algebraic Kripke sheaves and the class of Heyting-valued structures over the class
of algebras of the above-mentioned type is proven.

Acknowledgements. The work was done under the supervision of Professor Valentin Shehtman at Higher
School of Economics, Moscow, Russia.
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MAKING SENSE OF MIXED CONSEQUENCE RELATIONS

HITOSHI OMORI AND JONAS R. B. ARENHART

From the perspective of Susan Haack [7], there is a fundamental worry concerning the proper under-
standing of many-valued logics. Haack is shows scepticism concerning the intelligibility of truth values
other than ‘true’ and ‘false’, as it seems to be required in such logics. Still, some of those logics are
intelligible from her perspective. Her major claims are: first, in the case of some specific three-valued
logics, it may happen that the third truth value represents not a sui generis additional value, but rather
the absence of one of the two truth values ‘true’ and ‘false’. Then, when that is the case, no extra
truth value is required, and two-valuedness is preserved. Second, and related to the first point, it may
happen that the extra truth values are more properly understood, again, not as additional values, but
rather as epistemological variants of ‘true’ and ‘false’, such as ‘true and analytic’, or ‘true and known
to be true’; so, in these scenarios, besides the fact that only two truth values are available, bivalence
also holds, that is, we preserve the stronger claim that every proposition is either true or false (for a
discussion of both cases, see Haack [7, p.213]).

Notice that these worries are spelt out in a context that does not concern the nature of consequence
relation, but deals with the very idea of a third truth value and its intelligibility. Haack suggests that
two-valuedness and bivalence are the proper ingredients that should be retained if we are to grant
understanding and intelligibility to such systems. Her strategy consists in ‘explaining’ the working of
such systems in terms of these more well known concepts, plus some additional semantic or epistemic
layer, for instance. In such cases, we don’t need a mysterious third truth value. This kind of move
allows Haack to make sense of some many-valued logics, with non-mixed consequence relations (cf.
[13]).

More recently, there are a number of interesting progresses being made in the literature of mixed
consequence relations (cf. [4, 5, 1, 2, 6]). The fact is that although such consequence relations can
be defined in general by building on arbitrary many-valued semantics, the more discussed ones are
typically defined in the context of some of the three-valued semantics that Haack complained about,
namely Strong and Weak Kleene matrices. More importantly, in the case of such discussions of mixed
consequence relations, — besides Haackian worries with the intelligibility of the additional truth values
—, given that the third value does not enjoy a fixed status if it is a designated value or not, we are
exactly in the kind of scenario where it is precisely the understanding of the third truth value that is
not always completely clear.

This is, then, another case where intelligibility is threatened — even more than the case with non-
mixed consequence relations —, by a mysterious ingredient, the extra truth value, and where a Haackian
therapy on such truth values may result in improvements of understanding for those adopting a more
traditional view on truth values. The aim of this paper is to do precisely that; we extend Haack’s
clarificatory strategy for the case of mixed consequence relations, based on Strong and Weak Kleene
matrices, and make sense of them from the classicists’ perspective.

The paper will be structured as follows. First, we start with Haack’s informal ideas on how to
interpret many-valued logics. We recap her criticism of extra truth values and her proposed solution
in terms of two classical truth values. This will be followed by a presentation of semantic frameworks
where the third truth value is substituted by more precise notions incorporating some restrictions on
two-valuedness and bivalence (so, the frameworks are either two-valued or bivalent). More specifically,
for the two-valued semantics, both for Strong and Weak Kleene matrices, we will make use of the
plurivalent semantics devised by Graham Priest in [15] and a variation introduced in [11]. Here are
some definitions.

Definition 1 (Univalent semantics). A univalent semantics for a propositional language L is a structure
M=⟨V,D, δ⟩, where V is a non-empty set of truth values, D is a non-empty proper subset of V, and
δ contains, for every n-ary connective ∗ in the language, a truth-function δ∗ : Vn → V. A univalent
interpretation is a pair ⟨M,µ⟩, where M is such a structure, and µ is an evaluation function from Prop
to V. Given an interpretation, µ is extended to a function from Form to V recursively, by the following
clause:
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• µ(∗(A1, . . . , An))=δ∗(µ(A1), . . . , µ(An)).

Finally, Γ |=M A iff for all univalent interpretation ⟨M,µ⟩, if µ(B) ∈ D for all B ∈ Γ, then µ(A) ∈ D.

Definition 2. Given a univalent interpretation, the corresponding general plurivalent interpretation
(gp-interpretation hereafter) is the same, except that we replace µ by a one-many evaluation relation,
R, between Prop and V. Given an interpretation, R is extended to a relation between Form and V
recursively, by the following clause:

(‡) ∗(A1, . . . , An)Rv iff for some v1, . . . , vn: [AiRvi and v=δ∗(v1, . . . , vn)].

Moreover, we can define two sorts of consequence relation out of this given plurivalent semantics. To
this end, we say that R tolerantly designates A iff ARv for some v ∈ D, and R strictly designates A
iff for all v∈V, ARv only if v∈D (iff it is not the case that ARv for some v /∈ D). Building on these,
we define the corresponding notions of tolerant and strict general plurivalent consequence as follows:

• Γ|=M
g,tA iff for all gp-interpretations, R tolerantly designates A, if R tolerantly designates B,

for all B∈Γ.
• Γ|=M

g,sA iff for all gp-interpretations, R strictly designates A, if R strictly designates B, for all
B∈Γ.

Similarly, the negative plurivalent semantics, proposed in [11], can be obtained as follows.

Definition 3. Given a univalent interpretation, the corresponding negative plurivalent interpretation
is the same, except that we replace µ by a one-many evaluation relation, R, with the following negativity
condition:

• There is no p∈Prop such that pRv for all v∈V.
Given an interpretation, R is extended to a relation between Form and V recursively, by the clause (‡).
The semantic consequence relations |=M

n,t and |=M
n,s can then be defined as in the general plurivalence

case.

On the other hand, for the bivalent semantics, we will make use of other frameworks. That is,
for Weak Kleene matrix, we make use of the framework suggested by Hans Herzberger in [8]. More
concretely, here are the details.

Definition 4. A Herzberger interpretation of L is a pair ⟨vt, vh⟩, where vt : Prop → {t, f} and
vh : Prop → {0, 1}. Valuations vt and vh are then extended to interpretations It and Ih by the following
conditions.
It(p)=t iff vt(p)=t Ih(p)=1 iff vh(p)=1
It(¬A)=t iff It(A)=f Ih(¬A)=1 iff Ih(A)=1
It(A∧B)=t iff It(A)=t & It(B)=t Ih(A∧B)=1 iff Ih(A)=1 & Ih(B)=1
It(A∨B)=t iff It(A)=t or It(B)=t Ih(A∨B)=1 iff Ih(A)=1 & Ih(B)=1

Intuitively, the first component vt represents a truth component and vh represents an interpretative
(e.g., epistemic) dimension. Now that there are four combinations for elements of Prop, we may easily
turn the above two-valued semantics into a four-valued semantics, as also observed by Herzberger.1

Definition 5. A four-valued interpretation of L is a function v4 : Prop → {t1, t0, f0, f1}. Given a
four-valued interpretation v4, this is extended to a function I4 that assigns every formula a truth value
by the following truth functions:

A ¬A
t1 f1
t0 f0
f0 t0
f1 t1

A∧B t1 t0 f0 f1
t1 t1 t0 f0 f1
t0 t0 t0 f0 f0
f0 f0 f0 f0 f0
f1 f1 f0 f0 f1

A∨B t1 t0 f0 f1
t1 t1 t0 t0 t1
t0 t0 t0 t0 t0
f0 t0 t0 f0 f0
f1 t1 t0 f0 f1

In other words, I4 is just a direct product of It and Ih. Given a many-valued interpretation of the
language under consideration, we need to specify the set of designated values to define the semantic
consequence relation. To this end, we introduce three different sets of designated values as follows:

D1 := {t1}; D2 := {t1, t0}; D3 := {t1, t0, f0}.

We can then define three consequence relations as follows.

1Note, however, that Herzberger uses a different notation.
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Definition 6. For Γ∪{A}⊆Form, and for i∈{1, 2, 3}, Γ |=i A iff for all four-valued interpretations v4,
I4(A)∈Di if I4(B)∈Di for all B∈Γ.

For Strong Kleene matrix, we make use of not only the framework suggested by Herzberger, along
the tweaking suggested by John Martin in [10] (interestingly, Ekaterina Kubyshkina and Dmitry Zaitsev
also devised the same semantics with a different motivation in [9] independently of Martin), but also a
framework introduced by Matthew Clemens in [3] (cf. [12] for a generalization).2 The latter semantics
is as follows.

Definition 7. A four-valued interpretation of L is a function v from Prop to {⟨1, 1⟩, ⟨1, 0⟩, ⟨0, 1⟩, ⟨0, 0⟩}.
Given a four-valued interpretation v, this is extended to a function I : Form → {⟨1, 1⟩, ⟨1, 0⟩, ⟨0, 1⟩, ⟨0, 0⟩}
as follows:

¬
⟨1, 1⟩ ⟨0, 0⟩
⟨1, 0⟩ ⟨0, 1⟩
⟨0, 1⟩ ⟨1, 0⟩
⟨0, 0⟩ ⟨1, 1⟩

∧ ⟨1, 1⟩ ⟨1, 0⟩ ⟨0, 1⟩ ⟨0, 0⟩
⟨1, 1⟩ ⟨1, 1⟩ ⟨1, 0⟩ ⟨0, 1⟩ ⟨0, 0⟩
⟨1, 0⟩ ⟨1, 0⟩ ⟨1, 0⟩ ⟨0, 1⟩ ⟨0, 0⟩
⟨0, 1⟩ ⟨0, 1⟩ ⟨0, 1⟩ ⟨0, 1⟩ ⟨0, 0⟩
⟨0, 0⟩ ⟨0, 0⟩ ⟨0, 0⟩ ⟨0, 0⟩ ⟨0, 0⟩

∨ ⟨1, 1⟩ ⟨1, 0⟩ ⟨0, 1⟩ ⟨0, 0⟩
⟨1, 1⟩ ⟨1, 1⟩ ⟨1, 1⟩ ⟨1, 1⟩ ⟨1, 1⟩
⟨1, 0⟩ ⟨1, 1⟩ ⟨1, 0⟩ ⟨1, 0⟩ ⟨1, 0⟩
⟨0, 1⟩ ⟨1, 1⟩ ⟨1, 0⟩ ⟨0, 1⟩ ⟨0, 1⟩
⟨0, 0⟩ ⟨1, 1⟩ ⟨1, 0⟩ ⟨0, 1⟩ ⟨0, 0⟩

Note that truth tables for conjunction and disjunction are obtained as a result of adapting min and
max definitions, respectively, with the following order on the values: ⟨0, 0⟩<⟨0, 1⟩<⟨1, 0⟩<⟨1, 1⟩. Note
also that the truth table for negation is very classical.

Finally, by building on these semantic frameworks, we make sense of the mixed consequence relations,
by appealing to the more intelligible nature of the truth values and of the resulting semantics involved.
As a result, we shall argue, the nature of such consequence relations becomes clear for those having
doubts about the meaning of such logics, especially the status of the third truth value and its role in
the systems being developed.
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COMPLETENESS OF THE LOGIC HC IN A SPECIAL SPACE

ANASTASIIA ONOPRIENKO

In a commentary to his collected works [1], Kolmogorov remarked that his paper [2] “was written in
hope that with time, the logic of solution of problems [i.e., intuitionistic logic] will become a permanent
part of a [standard] course of logic. A unified logical apparatus was intended to be created, which
would deal with objects of two types — propositions and problems.” Melikhov [3] constructed a formal
system QHC (a joint logic of problems and propositions) with two types of variables: problem and
proposition. Formulas of QHC are built from variables by using standart classical and intuitionistic
connectives ∧,∨,¬,→ (including classical and intuitionistic falsity constants 0 and ⊥ respectively),
modalities ! and ? and quantifiers ∀,∃. We do not differentiate graphically between standart classical
and intuitionistic connectives (∧,∨,¬,→, except classical and intuitionistic falsity constants), since
they can be distinguished by the type of the formulas that they act upon.

All propopositions (all problems) satisfy all inference rules and axioms schemes of classical (intuition-
istic) predicate logic. Formulas of this two types are interconnected by two operators. The modality
! inputs a proposition p and outputs a problem !p with intended reading “Find a proof of p”. The
modality ? inputs a problem α and outputs a proposition ?α with intended reading “There exists a
solution of α”. There are following axioms schemes and inference rules for modalities:

(1) !(p→ q) → (!p→!q);
(2) ?(α→ β) → (?α→?β);

(3)
p

!p
;

(4)
α

?α
;

(5) p→?!p;
(6) α→!?α;
(7) ¬!0.
Melikhov examined several types of topological models for logic QHC [4], but completeness fails

even for propositional part HC of this logic. The author considered algebraical models and Kripke-type
semantic for HC. For this types of models the author proved completeness theorem and finite model
property [5]. In [6] we constructed Kripke semantics of the QHC logic and demonstrated that the
completeness theorem (and even the strong completeness theorem) of the QHC logic is valid for the
given class of models.

In [7] we propose the topological models of the HC logic. Let us describe these models. Suppose
that (X, τ) is an arbitrary nonempty topological space and A is its dense subset. The triplet (X, τ,A)
is named by topological frame. The variables p of the proposition sort are interpreted as arbitrary
subsets |p| ⊂ A. The variables α of the problem sort are interpreted as arbitrary open subsets |α| ⊂ X.
The truth values of the formulas are determined by induction on the construction of the formula;
furthermore, the truth value of any formula of the proposition sort is some subset A and the truth value
of any formula of the problem sort is an open subset X. The classical and intuitionistic connectives
and constants are interpreted in the following standard manner (see, e.g., [8]).

The classical connectives and the constant 0:
|p ∧ q| = |p| ∩ |q|;
|p ∨ q| = |p| ∪ |q|;
|p→ q| = (A \ |p|) ∪ |q|;
|0| = ∅.
The intuitionistic connectives and the constant ⊥:
|α ∧ β| = |α| ∩ |β|;
|α ∨ β| = |α| ∪ |β|;
|α→ β| = Int((X \ |α|) ∪ |β|);
|⊥| = ∅.
The modalities are interpreted as follows:
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|?α| = A ∩ |α|;
|!p| = X \ Cl(A \ |p|).
In other words, |!p| is a union of all open sets U such that U ∩A ⊂ |p|.
As usual, a formula p of the proposition sort (a formula α of the problem sort) is true in this

topological model of the HC if |p| = A (|α| = X).
The following theorem holds [7].

Theorem 1 (correctness and completeness).
1) If a formula is deducible in HC, then it is true in any topological model of the logic HC.
2) If a formula φ is non deducible in the logic HC, then there exists a topological model of the logic HC
in which the formula φ is not true.

It is clear that the topological models of the HC is an enrichment of the standart topological models of
the intuitionistic logic. Melikhov proved [3] that the HC is a conservative extension of the intuitionistic
logic and the logic S4 (where modality 2 of the logic S4 is understood as the derived modality ?! of the
HC). The following interesting fact is valid. If we put a dense subset A coinciding with the whole set X
and consider just the classical part of the HC with this derived modality, then we obtain the standart
topological models of the logic S4 (see, e.g.[9]).

Let us clarify the formulation of the theorem 1 as follows.

Theorem 2.
1) HC is the logic of the class of all finite topological spaces with a dense subset.
2) HC has the effective finite model property with respect to the class of topological spaces with a dense
subset.

It is known that S4 is the logic of the class of all finite topological spaces. There are lots of classical
results on topological models of the logic S4 with much more mathematical content. One of them
is McKinsey and Tarski’s theorem: S4 is the logic of any dense-in-itself metric separable space [10].
Another results concern the completeness of the logic S4 in special spaces: the Cantor space C, the
rational line Q and the real line R [11, 12]. One can try to find out whether similar results are valid for
HC. First of all we need the following theorem [5].

Definition 3. Audit set frame is a triplet (W,≼,Aud), where (W,≼) is a standard intuitionistic frame
(W is a nonempty set, ≼ is a partial order), Aud ⊂ W is a confinal subset of audit states (i.e.
∀a ∈W ∃b ∈ Aud a ≼ b).

Audit set frame are introduced by Artemov and Protopopescu as semantics of intuitionistic epistemic
logic IEL+ [13].

Let us define the evaluation |= for intuitionistic formulas by standard way, for classical formulas by
naturally way only in audit states, and for modalities by this way:

a |=?α⇔ a |= α (for a ∈ Aud),

a |=!p⇔ ∀b ∈ Aud(a ≼ b⇒ b |= p) (for a ∈W ).

We obtain an audit set model of HC.

Theorem 4. Logic HC is the logic of the class of all audit set model with W = T2 — the infinite binary
tree.

One can strengthen the theorem 3.

Theorem 5. Logic HC is the logic of the class of all audit set model with W = T2 in which Aud and
T2 \Aud both are confinal.

Using this fact we prove the following result.

Theorem 6. Logic HC is complete with respect to topological frame (A, τ⩽,Q), where A is the set of
algebraic numbers, τ⩽ is the standart order topology and Q is the set of rational numbers.
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TEMPORAL EPISTEMIC LOGIC FOR REASONING WITH DELAY IN

AWARENESS

ELENA L. POPOVA

The present talk is based on joint work with V. V. Dolgorukov.

Standard epistemic logic fails to represent the real notion of reasoning as it suffers from the logical
omniscience problem. This problem arises because of distribution axiom:

(1) Ki(φ→ ψ) → (Kiφ→ Kiψ)

This axiom with a combination of necessitation rule for operator Ki guarantees that knowledge is
closed under logical inference. Therefore, we get over-idealized picture of reasoning which allows to
model only ideal agents. However, there is a way out, which is associated with the weakening of the
concept of knowledge. The solution includes the division of knowledge into implicit and explicit one.
While the implicit knowledge remains closed under logical inference, the explicit knowledge does not.
This approach is used in awareness logics.

Firstly, this solution was proposed for the notion of belief [6], then it was considered also for knowledge
[7]. Implicit knowledge refers to the knowledge that the agent possesses, but does not realise it. In
other words, the agent is not aware of this knowledge. Explicit knowledge is defined as knowledge with
awareness.

Class of awareness logics can be divided into static [6] and dynamic ones. The latter takes into account
the dynamics of information and are better suited for formalizing agent interaction scenarios. There are
dynamic awareness logics that are constructed in the DEL framework [8, 1], temporal frameworks [3, 2],
and rule-based frameworks [5, 4]. All the dynamic approaches consider epistemic changes as something
external. In other words, there is no any formal “trigger” in these systems that initiates the acquisition
of awareness and explicit knowledge. I would like to propose a logic that explains why agents become
aware and obtain explicit knowledge.

I will focus on the internal dynamic of awareness that includes changes occurring in the agent state of
knowledge. My approach involves internal changes in implicit agents’ knowledge that cause obtaining of
awareness and explicit knowledge. I will present temporal epistemic logic for awareness with minimum
delay (TELAMD). TELAMD formalizes the deliberation of imperfect agents in a constantly changing
flow of information. In contrast with other dynamic awareness logics, it has one special axiom that
plays a role of internal trigger for awareness and so explicit knowledge.

Let us assume a fixed countable set Prop of atomic propositions and a fixed finite set Ag of agents.

Definition 1 (Syntax). Formulas of the language L are given by the Backus-Naur form

φ ::= p | ¬φ | (φ ∧ φ) | Kiφ | Aiφ | Xφ | Y φ
with p ∈ Prop, i ∈ Ag.

Other logical connectives and constants are introduced as standard abbreviations. Formula Kiφ is
read as “the agent i knows φ implicitly”, Aiφ is read as “the agent i is aware of φ”. Formula “2iφ” is
interpreted as “agent i knows explicitly φ”. It is defined as a syntactic abbreviation for the following
combinations of implicit knowledge and awareness:

2iφ := Kiφ ∧Aiφ

Definition 2 (TELAMD Model). A model of temporal epistemic model for agents with delay in aware-
ness is a tuple

M = (W, (∼i)i∈Ag,⇝, A, V )

where

• W ̸= ∅ is a set of possible worlds
• ∼i ⊆W ×W is an accessibility relation for an agent i
• ⇝ ⊆W×W is a temporal accessibility relation for the epistemic evolution of the possible worlds
• A : Ag ×W → P(L) is awareness function
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• V : Prop→ P(W ) is an evaluation function for propositional variables

A relation ∼i is an equivalence relation. The relation “x ⇝ y” is interpreted as “y is the next
temporal stage of the possible world x”.

Definition 3 (Restrictions on TELAMD Model). Evolutionary relation ⇝ has the following properties

(1) ∀x∀y∀z((y ⇝ x ∧ z ⇝ x) ⇒ y = z)
reverse functionality

(2) ∀x∀y∀z((x⇝ y ∧ y ∼i z) ⇒ ∃w(w ⇝ z ∧ x ∼i w))
perfect recall

(3) ∀x∀y((x ∼i y ∧ ∃z(x⇝ z)) ⇒ ∃w(y ⇝ w))
knowledge about the absence of the forward dead end

(4) ∀x∀y((x ∼i y ∧ ¬∃z(x⇝ z)) ⇒ ¬∃w(y ⇝ w))
knowledge about the forward dead end

(5) ∀x∀y((x ∼i y ∧ ∃z(z ⇝ x)) ⇒ ∃w(w ⇝ y))
knowledge about the absence of the backward dead end

(6) ∀x∀y((x ∼i y ∧ ¬∃z(z ⇝ x)) ⇒ ¬∃w(w ⇝ y))
knowledge about the backward dead end.

Property (1) claims that evolutionary relation ⇝ is reverse functional. Restriction (2) corresponds
to “perfect recall” property. Restrictions (3)–(6) claim that backward and forward temporal branching
of different length is forbidden.

Definition 4 (Semantics). The truth of a modal formula φ in a pointed model (M, w) is defined as
follows:

• M, w ⊨ p⇐⇒ w ∈ V (p)
• M, w ⊨ ¬φ⇐⇒ M, w ⊭ φ
• M, w ⊨ φ ∧ ψ ⇐⇒ M, w ⊨ φ and M, w ⊨ ψ
• M, w ⊨ Kiφ⇐⇒ ∀w′(w ∼i w

′ ⇒ M, w′ ⊨ φ)
• M, w ⊨ Xφ⇐⇒ ∀w′(w ⇝ w′ ⇒ M, w′ ⊨ φ)
• M, w ⊨ Y φ⇐⇒ ∀w′(w′ ⇝ w ⇒ M, w′ ⊨ φ)
• M, w ⊨ Aiφ⇐⇒ φ ∈ Ai(w)

The axiom system T ELAMD for temporal epistemic logic with minimal delay in awareness consists
of the following axiom schemes and inference rules.

(1) all instances of classical tautologies
(2) axioms S5 for operator Ki

(3) X(φ→ ψ) → (Xφ→ Xψ)
(4) Y (φ→ ψ) → (Y φ→ Y ψ)

(5) φ→ XŶ φ

(6) φ→ Y X̂φ

(7) Ŷ φ→ Y φ
(8) KiXφ→ XKiφ
(9) X⊥ → KiX⊥
(10) ¬X⊥ → Ki¬X⊥
(11) Y⊥ → KiY⊥
(12) Aiφ→ XAiφ
(13) Aiφ→ KiAiφ

(14) (Ŷ ¬Kiφ ∧Kiφ) → XAiŶ φ

and inference rules (modus ponens and necessitation rule for operators Ki, X, Y ):

MP
φ,φ→ψ
ψ

NecKi

⊢φ
⊢Kiφ

NecX
⊢φ
⊢Xφ

NecY
⊢φ
⊢Y φ

Axiom 14 is the awareness trigger. It expresses the main idea of the internal dynamics of awareness.
If the agent did not know something implicitly, and then knows it implicitly, so at the next step they
would become aware of it.
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Theorem 5 (Soundness and Strong Completeness of TELAMD). Logic TELAMD is sound and strongly
complete w.r.t. TELAMD models. Then,

(2) Γ ⊨ φ⇐⇒ Γ ⊢ φ

Theorem 6 (Decidability of TELAMD). Logic TELAMD is decidable.

The complexity of the satisfiability problem for TELAMD is an open problem.
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ALGEBRAIC SEMANTICS FOR HYPERGRAPH LAMBEK CALCULUS

TIKHON PSHENITSYN

1. Introduction

The Lambek calculus L is a non-commutative substructural logic designed to model the syntax of
natural languages. Formulas of the Lambek calculus are built from primitive ones using the product
· and two divisions \, /. Since the seminal work of Joachim Lambek [4], numerous extensions and
variants of L have been studied, for example, the nonassociative Lambek calculus NL, the commutative
Lambek calculus LP, the multimodal Lambek calculus NL♢, the displacement calculus D.

In [6, 7], we proposed a generalization of L called the hypergraph Lambek calculus HL. This calculus
has a complex hypergraph syntax: for example, the inductive definition of a formula of HL says that, if
we take a graph G such that its edges are labeled by already defined formulas, then ×(G) is a formula
as well. The operation × generalizes the product of L; HL also includes the hypergraph division ÷.
It turns out that HL is a very general framework such that one is able to embed L, NL, LP, NL♢, D
in it by modeling sequents of each of these calculi with certain kinds of hypergraphs. Moreover, many
fundamental properties of L and of related calculi can be straightforwardly generalized to HL, e.g. the
cut elimination theorem. Thus establishing facts about HL could be useful to highlight some general
properties of the Lambek calculus and of its modifications.

The Lambek calculus has several semantics, in particular, the algebraic semantics: L is the logic
of residuated semigroups [3, p. 101]. A residuated semigroup is a structure of the form ⟨M, ◦,≤, \, /⟩
such that ⟨M, ◦⟩ is a semigroup, ⟨M,≤⟩ is a partially ordered set, ◦ is monotonic w.r.t. ≤, and for
all a, b, c ∈ M it holds that a ◦ b ≤ c ⇔ a ≤ c/b ⇔ b ≤ a\c. The completeness theorem for L w.r.t.
this semantics is proved using canonical models. Another semantics for L is the language semantics [5],
which corresponds to linguistic applications of L.

In this work, we develop an algebraic semantics for HL by defining the notion of a residuated
hypergraph semigroup. The definition itself is of most interest to us since it adapts the basic algebraic
concept of a semigroup operation for the hypergraph setting. While a standard semigroup operation
a ◦ b, roughly speaking, combines a and b placed in a row one after another, a hypergraph semigroup
has a family of operations represented as arbitrary hypergraphs labeled by elements of this semigroup.
It is not hard to prove that HL is sound and complete w.r.t. residuated hypergraph semigroups: the
completeness proof is done by the canonical model construction as well.

2. Preliminaries

2.1. Hypergraphs. A ranked set M is the set along with a rank function rk : M → N; let Mn

denote {a ∈ M | rk(a) = n}. Given a ranked set of labels T , a hypergraph G over T is a tuple
G = ⟨VG, EG, attG, labG, extG⟩ where VG is a finite set of nodes, EG is a finite set of hyperedges,
attG : EG → V ∗

G assigns a string (i.e. an ordered multiset) of attachment nodes to each hyperedge,
labG : EG → T labels each hyperedge by some element of T in such a way that rk(labG(e)) = |attG(e)|
whenever e ∈ EG, and extG ∈ V ∗

G is a string of external nodes. Hypergraphs are always considered up
to isomorphism. The set of all hypergraphs with labels from T is denoted by H(T ). The rank function
rkG (or rk , if G is clear) is defined as follows: rkG(e) := |attG(e)|. Besides, rk(G) := |extG|.

Let [m] = {1, . . . ,m} and [0] = ∅. A handle a• is a hypergraph ⟨[n], [1], att, lab, 1 . . . n⟩ where
att(1) = 1 . . . n and lab(1) = a (a ∈ T , rk(a) = n). A string graph sg(w) induced by the string
w = a1 . . . an is a hypergraph of the form ⟨{vi}ni=0, [n], att, lab, v0vn⟩ where att(i) = vi−1vi, lab(i) = ai.

Given a hypergraph H ∈ H(C) and a function f : C → T , a relabeling Hf is the hypergraph
Hf = ⟨VH , EH , attH , f ◦ labH , extH⟩. It is required that rk(a) = rk(f(a)) for a ∈ C.

2.2. Hyperedge replacement. The replacement of a hyperedge e0 in G (e0 ∈ EG) by a hypergraph
H (such that rk(e0) = rk(H)) is done as follows:

(1) remove e0 from EG;
(2) insert an isomorphic copy of H (H and G must consist of disjoint sets of nodes and hyperedges);
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(3) for each i = 1, . . . , rk(e0), fuse the i-th external node of H with the i-th attachment node of
e0 (formally, the set of new nodes is (VG ⊔ VH)/≡ where ≡ is the smallest equivalence relation
satisfying attG(e0)(i) ≡ extH(i)).

The result is denoted as G[e0/H]. If several hyperedges of a hypergraph are replaced by other hy-
pergraphs, then the result does not depend on the order of the replacements; moreover the result
does not change, if replacements are done simultaneously [2]. If e1, . . . , ek are distinct hyperedges of
a hypergraph H and they are replaced by hypergraphs H1, . . . ,Hk resp., then the result is denoted
H[e1/H1, . . . , ek/Hk].

2.3. Hypergraph Lambek Calculus. To define formulas (called types) of HL, we fix a ranked set Pr
of primitive types; we require that for each k ∈ N there are infinitely many p ∈ Pr such that rk(p) = k.
Besides, we fix special labels $n, n ∈ N (“placeholders”) and set rk($n) = n; let us agree that these
labels do not belong to any other set considered in the definition of the calculus or in the definitions
from the next section. If T is a ranked set of labels, then H$(T ) denotes the set of hypergraphs such
that, for each G ∈ H$(T ), labels of all hyperedges of G, except for one, are from T , and the remaining

one equals $d for some d. The hyperedge of G ∈ H$(T ) labeled by $d is denoted by e$G.
The ranked set of types Tp is defined inductively as follows:

(1) All primitive types are types.
(2) Let N ∈ Tp be a type, and let D be a hypergraph from H$(Tp) (i.e. its labels, except for

one, are already defined types, and the remaining one is $d) such that |ED| > 1. Let also

rk(N) = rk(D). Then N ÷D is also a type such that rk(N ÷D) := rk(e$D).
(3) IfM ∈ H(Tp) is a hypergraph labeled by already defined types such that |EM | > 0, then ×(M)

is also a type, and rk(×(M)) := rk(M).

A hypergraph sequent is a structure of the form H → A where H ∈ H(Tp) is a hypergraph labeled by
types such that |EH | > 0 and A is a type such that rk(H) = rk(A).

The hypergraph Lambek calculus HL derives hypergraph sequents. The only axiom of HL is of the
form A• → A where A ∈ Tp (A• is a handle). There are four inference rules of HL:

H[e/N•] → A H1 → labD(d1) . . . Hk → labD(dk)

H
[
e/D[e$D/(N ÷D)•, d1/H1, . . . , dk/Hk]

]
→ A

(÷L) D[e$D/F ] → N

F → N ÷D
(÷R)

H[e/M ] → A

H[e/(×(M))•] → A
(×L)

H1 → labM (m1) . . . Hl → labM (ml)

M [m1/H1, . . . ,ml/Hl] → ×(M)
(×R)

Here N ÷D, ×(M) ∈ Tp are types; e ∈ EH ; ED = {e$D, d1, . . . , dk}, EM = {m1, . . . ,ml}. Note that
H[e/a•] is simply the result of relabeling of the hyperedge e by a.

The underlined parts of the definitions correspond to the so-called Lambek’s restriction, which says
that antecedents of sequents of L must be non-empty. If these parts are removed, then we come up with
the hypergraph Lambek calculus allowing edgeless premises HL∗. Note that Lambek’s restriction in HL
as defined in this work differs from that from [6, 7], and we claim that the new one is more appropriate
(although we are not going to discuss this in the current work).

3. Algebraic Semantics for HL

By H+(T ) we denote the set of hypergraphs over T that contain at least one hyperedge.

Definition 1. A hypergraph semigroup is a structure ⟨A,Op⟩ where
• A is a ranked set (in other words, a hypergraph semigroup is ω-sorted);
• Op : H+(A) → A is a function such that rk(Op(H)) = rk(H).

The function Op must satisfy the following properties:

(1) (handle identity) Op(a•) = a for all a ∈ A;
(2) (associativity) Op (H [e/(Op(G))•]) = Op(H[e/G]) for all appropriate G,H.

Definition 2. A partially ordered hypergraph semigroup is a hypergraph semigroup ⟨A,Op,≤⟩ equipped
with a family of partial orders ≤ = {≤n⊆ An ×An}∞n=0 defined on An for each n such that:

a ≤n b⇒ Op(H[e/a•]) ≤rk(H) Op(H[e/b•]), for each H ∈ H+(A) and e ∈ EH with rk(e) = n.

Definition 3. A residuated hypergraph semigroup (RHS) is a partially ordered hypergraph semigroup
⟨A,Op,≤, Res⟩ where the function Res is defined on pairs (a,D) such that a ∈ A, D ∈ H$(A), |ED| > 1,
rk(a) = rk(D), and it satisfies the following properties:
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(1) Res(a,D) ∈ A and rk(Res(a,D)) = rk(e$D);

(2) (residual property) Op(D[e$D/b
•]) ≤rk(D) a⇔ b ≤rk(e$D) Res(a,D).

Informally, if we understand a ◦ b in a semigroup as a combination of a and b according to ◦, then
Op(H) can be understood as a combination H of elements of a hypergraph semigroup that are labels
of hyperedges of H. In particular, if H is a string graph sg(ab), then elements a and b are combined in
a standard, linear way, and we return to the notion of a semigroup, as the following example shows:

Example 1. Given an RHS A = ⟨A,Op,≤, Res⟩, let us consider the structure StrA = ⟨A2, ◦,≤2, \, /⟩
where a ◦ b := Op(sg(ab)), b\a := Res(a, sg(b $2)), a/b := Res(a, sg($2 b)). Then StrA is a residuated
semigroup: for example, associativity holds because (a◦b)◦c = Op (sg (Op (sg (ab)) c)) = Op (sg (abc)) =
Op (sg (aOp (sg (bc)))) = a ◦ (b ◦ c). It is an interesting question whether the converse holds as well:
given a residuated semigroup S, is there an RHS A such that StrA is isomorphic to S?

An example of an RHS generalizing the residuated semigroup of languages is the following one:

Example 2. Given a ranked alphabet Σ, the structure HLAN+
Σ := ⟨AΣ, Op,≤, Res⟩ is an RHS where

• AΣ consists of hypergraph languages, i.e. L ∈ AΣ iff for some n ∈ N it holds that L ⊆ {H ∈
H+(Σ) | rk(H) = n}; then we say that rk(L) = n. Formally, we have to consider ω distinct
copies of the empty language ∅n such that rk(∅n) = n (in order to avoid many-sortedness of ∅);

• Op(H) = {H[e1/G1] . . . [em/Gm] | 1 ≤ i ≤ m,Gi ∈ labH(ei)} where H ∈ H+(AΣ) and EH =
{e1, . . . , em};

• Res(L,D) = {G ∈ H+(Σ) | ∀D1 ∈ labD(d1) . . . ∀Dl ∈ labD(dl) D[e$D/G, d1/D1, . . . , dl/Dl] ∈
L} where D ∈ H$(AΣ), |ED| > 1 and ED = {e$D, d1, . . . , dl};

• L1 ≤n L2 iff L1 ⊆ L2.

Definition 4. An RHS-model (A, v) of HL is an RHS A = ⟨A,Op,≤, Res⟩ along with a valuation
v : Tp → A such that:

(1) rk(v(T )) = rk(T );
(2) v(×(M)) = Op(Mv);
(3) v(N ÷D) = Res(v(N), Dv); note that for convenience we also define v($n) = $n.

Definition 5. A sequent H → C is valid in an RHS-model (A, v) iff v(×(H)) ≤n v(C) (n = rk(C)).

Theorem 6. A sequent is derivable in HL if and only if it is valid in all RHS-models.

The proof is essentially the same as for L, and it uses the standard canonical model construction.
If the hypergraph counterpart of Lambek’s restriction is removed everywhere (i.e. if we replace

H+(A) by H(A) in the algebraic definitions and remove the requirement that |ED| > 1 in Definition
3), then we come up with the notion of residuated hypergraph monoid, and we can prove soundness and
completeness of HL∗ w.r.t. the class of such models. The term monoid can be explained as follows:
if hypergraphs without hyperedges are allowed, then, in Example 1, StrA is a residuated monoid with
the unit e = Op(sg(Λ)) where Λ is the empty word; note that sg(Λ) is the hypergraph ⟨v0, ∅, ∅, ∅, v0v0⟩
with zero hyperedges and one node.

Concerning the language semantics for HL, in [6], we prove that the product-free fragment of HL is
complete w.r.t. models defined on HLAN+

Σ (the proof is standard, it generalizes that from [1]). The
question whether HL with product is complete w.r.t. hypergraph language models remains open.

4. Conclusion

The hypergraph Lambek calculus HL is a general framework extending several variants of the Lambek
calculus. The calculus HL is convenient for representing non-linear structures, for example, syntax trees
used in linguistics or sequents of the displacement calculus. In our opinion, its generality is the reason
why studying it might be important: this helps us to find some common properties of different calculi
based on the Lambek calculus and studied in the literature as well as to see where their similarities end.
This, in particular, is applicable to model-theoretic questions: the algebraic semantics introduced in
this work shows us a way to define an algebraic semantics for each particular fragment of HL. Moreover,
the definition of RHS gives us a fresh point of view at the basic notion of a semigroup operation.
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MEZHIROV’S GAME FOR INTUITIONISTIC LOGIC AND ITS VARIATIONS

IVAN O. PYLTSYN

Game semantics allows us to look at basic logical concepts from another side. This approach to logic
has a long history, there are plenty of different types of games: provability games, semantic games,
etc [10,11]. And there is an interesting type of provability games called Mezhirov’s game proposed by
Iliya Mezhirov for intuitionistic logic of propositions (IPC) and Grzegorczyk modal logic (Grz) [1,2].
This idea was developed in many different directions; for example, in 2008 in the joint paper with
N. Vereschagin a game semantics was given for affine and linear logic [3]. Independently G. Japaridze
worked on game semantics for linear logic [4]. Mezhirov’s games for minimal propositional logic (MPC),
logic of functional frames (KD!) and logic of serial frames (KD) were introduced in 2021 by A. Pavlova
[5].

Mezhirov’s game semantics for intuitionistic logic is interesting because of its simplicity and strong
connection with Kripke semantics and Kripke models. The game between Opponent and Proponent
starts with a formula φ. And Proponent has a winning strategy iff φ is an intuitionistic tautology. The
connection between the game and Kripke models manifests itself in building strategy for Opponent from
a Kripke model (Opponent ”walks” from one world of a model to another) and in the reconstruction of
a model from Opponent’s winning strategy (in which there exists a world where φ is false). And these
procedures are connected to each other.

In my study, I try to generalize Mezhirov’s result in two directions: to generalize to intuitionistic logic
of predicates (introduce a game between Opponent and Proponent with at least the same connection
with Kripke models or with special classes of them) and to the case of a connection not only between
the game and tautologies of logic (⊨ φ), but also between the game and entailment from infinite sets of
formulas (T ⊨ φ).

The purpose of building such game was to get a theorem of kind ”Proponent has a winning strategy
in C0 iff O0 ⊨ φ”, where ⊨ is the semantic consequence defined by some class of predicate Kripke frames.
I initially thought about just logic of all Kripke models, i.e. it would be a game for intuitionistic logic
of predicates directly. But it turned out that in such case some fundamental problems arise and it is
natural to expand the logic (to use a smaller class of Kripke frames). Moreover, description of such
variations (not just logic of all Kripke models) could be useful, since, in general, Kripke semantics for
superintuitionistic predicate logic is rather weak (e.g. [9]). And I managed to get a description (based
on the game I built) for several variations. So let me describe the rules of the game.

Let Ω be the elementary intuitionistic language (without function symbols; language will contain ⊥,
and the set of logical connectives will be {→,∧,∨}, where ¬A will be considered as A→ ⊥), and we will
use Kripke models for intuitionistic logic of predicates [6,7] (I will call sets of constants in each world
”individual domains” (or ”the set of objects”) and use symbol ∆). For the set of formulas Γ and set of
objects (constants) ∆ let F(Γ,∆) = {P [c1, ..., cn]|P [x1, ..., xn] is a subformula of some formula from Γ
and free variables of it are only x1, ..., xn; ci ∈ ∆} (so F in some ways is a set of all ”subformulas” of
formulas from Γ). Players Opponent and Proponent will be associated with their sets O and P. The
position in the game is a trio C = (O,P,∆). In each position C: O and P are subsets of F(Γ,∆), where
∆ is taken from C (and can only expand in the game process) and Γ is fixed at the beginning of the
game and does not change until the end and equals to O0 ∪{φ} (where C0 = (O0, {φ},∆0) is a starting
position; ∆0 is an exact set of all constants contained in formulas from Γ). Proponent moves by adding
new formulas from F to P, Opponent moves by expanding ∆ (he can add nothing to ∆ if he wants;
and he can add to ∆ not just constants from Ω) and than adding new formulas from F to O.

The only thing left to define is who must move in a position C. To do that, let us firstly define the
notion of truth relation ⊩ in C for formulas from F(Γ,∆):
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C ⊮ ⊥
C ⊩ A[c1, ..., cn]⇌ A[c1, ..., cn] ∈ O
C ⊩ φ ⋆ ψ ⇌ φ ⋆ ψ ∈ O ∪ P and (C ⊩ φ) ⋆ (C ⊩ ψ), ⋆ ∈ {→,∧,∨}
C ⊩ qxP [x]⇌ qxP [x] ∈ O ∪ P and qα ∈ ∆(C ⊩ P [α]), q ∈ {∃,∀}

where A is a predicate symbol, arity(A) = n, ci ∈ ∆, P - formula with only one free variable. A star
in the case of (C ⊩ φ) ⋆ (C ⊩ ψ) means logical meta connective and behaves like a classical connective
(the same for q in qα ∈ ∆).

Let us call a formula from P Proponent’s mistake if it is false in the current position (the same for O
and Opponent). If Opponent has no mistakes but Proponent has, then Proponent moves. Otherwise,
Opponent must move. And if after a turn of a fixed player he must move again, he loses. If the game
goes on infinitely (each player manages to pass a turn to the other player each turn), Proponent wins;
also let us call formulas from O ∪ P marked formulas.

Now let us consider several examples of the game. In the first game C0 = (∅, {φ},∅), where
φ = ∀y∃x(P [x] → P [y]). Because ∆ is empty, there are no formulas in F of the form ∃x(P [x] → P [c]),
so Proponent has no mistakes, it’s Opponent’s turn. It is enough for him to just expand ∆, and it will
be Proponent’s turn. Proponent takes all formulas of the kind ∃x(P [x] → P [c]) and P [c] → P [c] and
passes turn to Opponent. He will do the same (expand ∆) and the game goes on infinitely.

In the second game C0 = (∅, {φ}, {c}), where φ = ¬P [c] → ¬∃xP [x]. φ is an implication, both
sending and conclusion of it is not marked, therefore false in the current position. So φ is true, it’s
Opponent’s turn. He expand ∆ to {c, α} and add to O formulas ¬P [c], ∃xP [x], P [α]. He might not
add ∃xP [x] to O and turn would still be passed to Proponent. But in this case Proponent would have
an opportunity to add to P ¬∃xP [x] and make this formula true in position (because ∃xP [x] would
not be marked), and Opponent still would have needed to add ∃xP [x]. After that, Proponent will not
be able to pass turn to Opponent, therefore, he will lose.

In the third game let C0 = (∅, {φ},∅), where φ = ∀x[(P [x] → ∀xP [x]) → ∀xP [x]] → ∀xP [x]
(Casari’s schema or Casari’s formula [8]). Again φ is an implication, it’s Opponent’s turn. He needs
to make sending false, so he expand ∆ and add to O all formulas (P [α] → ∀xP [x]) → ∀xP [x] and
sending of the φ: ∀x[(P [x] → ∀xP [x]) → ∀xP [x]]. Than Propopent creates mistakes for Opponent by
adding to P all formulas (P [α] → ∀xP [x]). To get rid of mistakes, Opponent needs to add all P [α],
and than Proponent just add to P ∀xP [x]. The only thing Opponent can do now is to expand ∆ and
repeat everything again. As we can see, this is the winning strategy for Proponent, but φ is not true in
all Kripke models. This formula will give us a useful class of Kripke frames (class of all Kripke frames
in which Casari’s formula is valid; let us call it Casari’s class (Kripke frame is from Casari’s class iff in
every countable sequence of worlds ωi their individual domains ∆i remain finite and stabilize; so class
of Casari’s Kripke frames includes all Noetherian Kripke frames)).

It seems to me that, informally, this game (and Mezhirov’s game for propositional intuitionistic
logic) could be understood as follows: Opponent is trying to build a theory that belies Proponent’s
assertion that ϕ follows from O0 (or, in the case of O0 = ∅, is trying to build a theory that shows that
Proponent’s thesis (φ) is not valid in general). And this theory must be coherent (Opponent must have
no mistakes), otherwise his approach is considered unsuccessful.

While getting closer to results, I should mention that there was some interest in considering variation
of the game with only finite ∆ (and Opponent can expand ∆ adding only finite number of objects)
because of better connection with Kripke models, so there appeared results for two variations of the
game (described one (let us call it infinite) and the same but with finite ∆ (finite variation)).

Theorem 1. In the infinite variation, Proponent has a winning strategy in position C0 = (O0, {φ},∆0)
(with possibly infinite O0) iff O0 ⊨ φ, where ⊨ is the entailment in logic of all Noetherian Kripke frames.

Theorem 2. In the infinite variation, Proponent has a winning strategy in position C0 = (O0, {φ},∆0)
(with only finite O0) iff O0 ⊨ φ, where ⊨ is the entailment in logic of all Casari’s Kripke frames.

These theorems lead, inter alia, to the fact that logics of Noetherian Kripke frames and of Casari’s
Kripke frames have the same weak entailment. Similar results we can see for the finite variation.

Theorem 3. In the finite variation, Proponent has a winning strategy in position C0 = (O0, {φ},∆0)
(with possibly infinite O0, but with only finite ∆0) iff O0 ⊨ φ, where ⊨ is the entailment in logic of all
Noetherian Kripke frames with only finite individual domains ∆ in each world.
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Theorem 4. In the finite variation, Proponent has a winning strategy in position C0 = (O0, {φ},∆0)
(with only finite O0) iff O0 ⊨ φ, where ⊨ is the entailment in logic of all Casari’s Kripke frames with
only finite individual domains ∆ in each world.

Theorem 5. In the finite variation, Proponent has a winning strategy in position C0 = (O0, {φ},∆0)
(with only finite O0) iff O0 ⊨ φ, where ⊨ is the entailment in logic of all finite Kripke frames with only
finite individual domains ∆ in each world.

As we can see, in the case of only finite individual domains in each world, logics of Noetherian Kripke
frames, of Casari’s Kripke frames and of finite Kripke frames have the same weak entailment.

As I mentioned, the main goal of this study was to find a game with strong connection with Kripke
models. Partially, this has been achieved (proofs for all 5 theorems contain building a strategy for
Opponent by ”walking” from one world of a model to another); in addition, some connections have
been established between weak entailment of logics of some classes. But the next step would be to
find a trio: a class of Kripke frames, a game semantics and a calculus (probably, an infinitary sequent
calculus) with the same strong entailment. In this case, it is better to take a simpler class of Kripke
frames in terms of the possible calculus for this class. So, because of this, Casari’s class looks better
than the Noetherian class. Therefore, I am trying right now to change rules of the game to get the
same strong entailment as in logic of all Kripke frames from Casari’s class.
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TOPOLOGICAL SEMANTICS OF THE PREDICATE MODAL CALCULUS QGL

EXTENDED WITH NON-WELL-FOUNDED PROOFS

PAVEL RAZUMNYY AND DANIYAR SHAMKANOV

The Gödel-Löb provability logic GL is a well-known propositional unimodal system. According to its
arithmetical interpretation, the modal connective 2 corresponds to the standard provability predicate
“... is provable in Peano arithmetic PA”. As shown by Solovay [7], a formula is a theorem of GL if and
only if every its arithmetical translation is a theorem of PA. In other words, GL captures the properties
of formal provability of PA that are provable in PA itself.

The Gödel-Löb provability logic GL can be also described by means of its relational semantics.
This logic is complete with respect to the class of irreflexive transitive Kripke frames without infinite
ascending chains. However, GL is only weakly complete for its relational interpretation.

Strong completeness is achieved if one considers topological (or neighbourhood) semantics of the
given system. The class of topological spaces corresponding to GL consists of all scattered topological
spaces (X, τ), where the modal connective 2 is interpreted as the co-derived-set operator cdτ (Y ) =
{x ∈ X | ∃U ∈ τ (x ∈ U ∧ U \ {x} ⊂ Y )}.

An interesting feature of GL is that this system allows cyclic and non-well-founded reasoning. In
[3, 1], it was shown that GL can be defined by means of a sequent calculus allowing non–well-founded
proofs. In [4, 5], the standard axiomatic calculus for GL was extended with non–well-founded derivations
and various topological completeness results for the obtained system were established.

In the present talk, we focus on a first-order predicate version of GL denoted by QGL. We consider
this system in a language without function symbols and constants and define it by the following axioms
and inference rules.

Axioms:

• tautologies of classical propositional logic,
• 2(A→ B) → (2A→ 2B),
• 2A→ 22A,
• 2(2A→ A) → 2A,
• ∀x A(x) → A(y),
• ∀x (A→ B) → (A→ ∀x B), where x /∈ FV (A).

Inference rules:

A A→ Bmp
B

,
Anec
2A

,
Agen

∀x A .

Thanks to Montagna [2], we know that QGL is not arithmetically complete. He also showed that
this system is not complete with respect to its Kripke semantics. However, it is not something out of
the ordinary. In many cases, predicate versions of Kripke complete modal propositional systems are
incomplete for their relational interpretations. Whether QGL is topologically complete, we do not know,
but we conjecture that it is not.

We introduce an extension of QGL obtained by allowing non-well-derivations in the QGL calculus.
A non-well-founded derivation, or ∞-derivation, is a (possibly infinite) tree whose nodes are marked
by predicate modal formulas and that is constructed according to the rules (mp), (gen) and (nec). In
addition, any infinite branch in an ∞-derivation must contain infinitely many applications of the rule
(nec). Below is an example of an ∞-derivation:

...

2∀x2 P2(x2) 2∀x2 P2(x2) → P1(x1)mp
P1(x1)gen

∀x1 P1(x1)
nec

2∀x1 P1(x1) 2∀x1 P1(x1) → P0(x0)mp .
P0(x0)
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A non-well-founded proof, or ∞-proof, is an ∞-derivation, where all leaves are marked by axioms of
QGL. We write QGL∞ ⊢ A if there is an ∞-proof with the root marked by A.

Our main result is that QGL∞ is complete with respect to the class of predicate topological frames for
QGL∞ with constant domains. We define a predicate topological frame for QGL∞ as a tuple (X, τ,D),
where (X, τ) is a scattered topological space and D is a non-empty domain. Note that, in the case of
topological semantics, the constant domain condition does not imply validity of the Barcan formula in
contrast to the case of relational frames.

Let us recall some basic notions of semantics of predicate modal systems. A valuation in D is a
function sending each n-ary predicate letter to an n-ary relation on D, and a variable assignment is
a function from the set of variables Var = {x0, x1, x2, . . . } to the domain D. For QGL∞, a predicate
topological model M = (X, τ,D, ξ) is a predicate topological frame (X, τ,D) of QGL∞ together with an
indexed family of valuations ξ = (ξw)w∈X in D. Elements of the set X are usually called worlds of the
model.

The truth of a formula A at a world w of a model M under a variable assignment h is defined as

• M, w, h ⊭ ⊥,
• M, w, h ⊨ P (x1, . . . , xn) ⇐⇒ (h(x1), . . . , h(xn)) ∈ ξw(P ),
• M, w, h ⊨ A→ B ⇐⇒ M, w, h ⊭ A or M, w, h ⊨ B,
• M, w, h ⊨ 2A⇐⇒ ∃U ∈ τ (w ∈ U and ∀w′ ∈ U \ {w} M, w′, h ⊨ A),
• M, w, h ⊨ ∀x A⇐⇒ M, w, h′ ⊨ A for any varible assignment h′ such that h′

x
= h,

where h′
x
= h means that h′(y) = h(y) for each y ∈ Var \ {x}.

A formula A is true in M if A is true at all worlds of M under all variable assignments. In addition,
A is valid in a frame F if A is true in all models over F .

Theorem 1 (topological completeness). For any formula A, QGL∞ ⊢ A if and only if A is valid in
every predicate topological frame of QGL∞.

In order to obtain this result, we focus on a proof-theoretic presentation of QGL∞ in a form of a
sequent calculus allowing non–well-founded proofs. This calculus is defined by the following initial
sequents and inference rules:

Γ, P (x⃗) ⇒ P (x⃗),∆, Γ,⊥ ⇒ ∆,

Γ, B ⇒ ∆ Γ ⇒ A,∆→L ,
Γ, A→ B ⇒ ∆

Γ, A⇒ B,∆→R ,
Γ ⇒ A→ B,∆

Γ, A(y),∀x A⇒ ∆
∀L ,

Γ,∀x A⇒ ∆

Γ ⇒ A(y),∆
∀R (y /∈ FV (Γ ∪∆)),

Γ ⇒ ∀x A,∆

Γ,2Γ ⇒ A
2 .

Π,2Γ ⇒ 2A,∆

In addition, every infinite branch in a non-well-founded proof of this calculus must contain infinitely
many applications of the rule (2).

Our proof of Theorem 1 is inspired by two other sequent-based completeness proofs. We follow the
proof for classical predicate logic based on reduction trees and the proof for the system GL extended
with non-well-founded derivations from [5].

We also establish a strong version of Theorem 1. We write Γ ⊨ A if for any predicate topological
model M = (X, τ,D, ξ), any world w of M and any variable assignment h : Var → D

∀B ∈ ΓM, w, h ⊨ B =⇒ M, w, h ⊨ A.

Combining the standard ultaproduct costruction and Shehtman’s ultrabouquet construction from [6],
we obtain the following proposition.

Proposition 2 (compactness). If Γ ⊨ A, then there is a finite subset Γ0 of Γ such that Γ0 ⊨ A.

Applying the previous results, we prove strong completeness for the following syntactic consequence
relation. We put Γ ⊢ A if there is an ∞-derivation δ with the root marked by A such that, for each leaf
a of δ that is not marked by an axiom, a is marked by a formula from Γ, and there are no applications
of the rules (gen) and (nec) on the path from the root of δ to the leaf a.
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Corollary 3 (strong completeness). For any set of formulas Γ and any formula A,

Γ ⊢ A⇐⇒ Γ ⊨ A.

In conclusion, we note one interesting question: what is the complexity of QGL∞? It may well turn
out that this system is not computably enumerable. In the area of predicate provability logic, there is
an example. According to Vardanian’s result, the set of predicate modal formulas provable in PA under
any interpretation is Π0

2-complete [8, 9].
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WHAT DO ‘EVIDENCE’ AND ‘TRUTH’ MEAN IN THE LOGICS OF EVIDENCE

AND TRUTH

ABÍLIO RODRIGUES

Logics of evidence and truth (LET s) are paraconsistent and paracomplete logics that extend the
logic of first-degree entailment (FDE), also known as Belnap-Dunn logic (see e.g. [4, 10]). LET s are
further developments of the work on paraconsistency carried out by da Costa, Carnielli, and Coniglio,
among others (see e.g. [7, 9, 11]), and they have been conceived to formalize the deductive behavior of
positive and negative evidence, which can be either conclusive or non-conclusive. LET s are equipped
with a classicality operator ◦ that recovers classical negation for sentences in its scope:

A,¬A ⊬ B, for some A and B, but for every A and B, ◦A,A,¬A ⊢ B,
B ⊬ A ∨ ¬A, for some A and B, but for every A and B, ◦A,B,⊢ A ∨ ¬A,

LET s thus divide the sentences of the language into two groups: one subjected to classical logic, the
other subjected to a subclassical logic that is FDE or an extension of FDE.

It is well-known that FDE can be interpreted in terms of preservation of information, and LET s
can also be interpreted along the same lines. Accordingly, a formula ◦A means that the information
conveyed by A, either positive or negative, is reliable, and it is assumed that reliable information is
subjected to classical logic. Thus, whenever ◦A holds, A cannot be contradictory (on pain of triviality).

The motivation for adding the connective ◦ to FDE is to be able to represent, in addition to the four
scenarios expressed by FDE, two more scenarios that specifically concern reliable information. More
precisely, when ◦A does not hold, and so the information conveyed by A is not known to be reliable,
we have the four scenarios of FDE. But when ◦A holds, these four scenarios are narrowed down to
just two: either the information A or the information ¬A is reliable, but not both. The resulting six
scenarios are expressed by a two-valued non-deterministic semantics as follows:

No reliable information A: v(◦A) = 0:

1. Only positive information A: v(A) = 1, v(¬A) = 0;
2. Only negative information A: v(A) = 0, v(¬A) = 1;
3. No positive nor negative information A: v(A) = 0, v(¬A) = 0;
4. Both positive and negative information A: v(A) = 1, v(¬A) = 1.

Either A or ¬A is reliable: v(◦A) = 1:

5. Reliable information A: v(A) = 1, v(¬A) = 0;
6. Reliable information ¬A: v(A) = 0, v(¬A) = 1.

The logic LET−
F is a sort of minimal logic of evidence and truth obtained by extending FDE with

the following rules:

◦A A ¬A
B

EXP ◦

A....
B

¬A....
B

B
PEM◦

The connective ◦ indicates the presence of reliable information, thus it allows distinguishing circum-
stances in which only positive (negative), though non-reliable, information A is available (viz., v(A) = 1
and v(◦A) = 0) from circumstances in which there is positive (negative) reliable information A (viz.,
v(A) = v(◦A) = 1). In other words, unlike in FDE, in LET−

F (as well as in the other LET s) we are
able to distinguish, among the six scenarios above, 1 from 5, as well as 2 from 6.

In [6], [14], and [5] sentential LET s that extend, respectively, Nelson’s logic N4 [1], FDE and FDE→

(FDE added with a classical implication, see [12]), along with sound and complete two-valued non-
deterministic semantics (see [11]), have been presented. In [2], Kripke models for sentential LET s have
been investigated. First-order LET s with two-valued semantics and Kripke semantics with variable
domains have been investigated in [3] and [13]. In [8] six-valued non-deterministic semantics for some
LET s have been presented, as well as extensions of LET s with rules for propagation of classicality have
been investigated.
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In a broad sense, propagation of classicality is how classical behavior propagates from less complex
to more complex sentences, and vice-versa. The LET s investigated so far enjoy the following property:

Let L ∈ {LET−
F , LETJ , LETK , LETF }. Let Γ = {◦¬n1A1, . . . , ◦¬nmAm}, for ni ≥ 0 (where ¬ni ,

ni ≥ 0, represents ni occurrences of negations before the formula Ai). Then, for any formula B formed
with A1, . . . , Am over the signature {¬,∧,∨,→} (and {¬,∧,∨} in the case of LETF and LET−

F ),
Γ ⊢L B ∨ ¬B, and Γ, B,¬B ⊢L C, that is, B behaves classically in this context.

Proof. This result is proved for LETF in [14, Fact 31], and for LETJ in [2, Proposition 7]. Proofs for
LET−

F and LETK can be obtained similarly. □

Although the classical behavior is transmitted from less complex to more complex formulas, the classi-
cality operator ◦ is not; that is, the inferences ◦p ⊢ ◦¬p and ◦p, ◦q ⊢ ◦(p# q) (# ∈ {∨,∧}), for example,
do not hold. The rules above, EXP ◦ and PEM◦ indicates this fact, since they are a sort of ‘elimination
rules’ for ◦, and there is no the respective introduction rule. However, in order to rigorously express
the idea of dividing the sentences of the language into two groups, which is an essential point of LET s
(as well as LFI s and da Costa’s Cn hierarchy) it would be desirable for the classicality operator ◦ to
be transmitted as well.

Recall that ◦A ∧ A and ◦A ∧ ¬A are intended to mean that the information conveyed, respectively,
by A and by ¬A, is considered reliable. In addition, positive and negative reliable information behaves
like truth and falsity in classical logic. As a consequence, from ◦A∧A one should be able to infer that
A ∨B is also reliable for any B, no matter whether ◦B holds or not, and so ◦(A ∨B) ∧ (A ∨B) holds.
For if this were not the case, that is, if both (A ∨ B) and ¬(A ∨ B) held, ◦A could not hold, since
¬(A∨B) implies ¬A. On the other hand, from ◦A∧¬A, it cannot be inferred that ¬(A∨B) is reliable,
because to conclude ¬(A ∨ B) both ¬A and ¬B are required. Hence, from ◦A ∧ ¬A, ◦(A ∨ B) cannot
be inferred. This suggests the validity of the following inferences:

(1) ◦A,A ⊢ ◦(A ∨B) ∧ (A ∨B),
(2) ◦B,B ⊢ ◦(A ∨B) ∧ (A ∨B),
(3) ◦A,¬A, ◦B,¬B ⊢ ◦(A ∨B) ∧ ¬(A ∨B),

and so on. The point of these inferences is that positive (resp. negative) reliable information behaves
like truth (resp. falsity) in classical logic: in order to have a A ∨B false, we need both A and B false,
but A true is enough to conclude A ∨B true.

When we extend the logic LET−
F with rules of propagation of classicality, we obtain a finitely valued

logic, dubbed LET+
F , with six semantic values that correspond to the six scenarios mentioned above.

No reliable information A:

1. Only positive information A: v(A) = T,
2. Only negative information A: v(A) = F,
3. No positive nor negative information A: v(A) = N,
4. Both positive and negative information A: v(A) = B,

Either A or ¬A is reliable:

5. Reliable positive information A: v(A) = T◦,
6. Reliable negative information A: v(A) = F◦.

The six-valued semantics sketched above is based on twist-structures, and they define the lattice L6
and the meet semi-lattice A6 that extend the logical lattice L4 and the approximation A4, defined by
the four values of FDE (see [4]), with the two additional values conclusively true (T◦) and conclusively
false (F◦):
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T◦

T

N B

F

F◦

T◦ B F◦

T F

N

The aim of this talk is twofold. First, we present and discuss some recent developments in LET s, in
particular the logic LET+

F . Second, in order to answer some criticisms raised against LET s, we explain
the notions of evidence and information underlying the intuitive interpretation of LET s, and also clarify
in which sense the deductive behavior of conclusive evidence is expressed in terms of preservation of
truth.
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TILING PROBLEMS AND COMPLEXITY OF LOGICS

MIKHAIL RYBAKOV AND DARYA SEROVA

1. Introduction

Domino, or tiling, problems [1, 9] provide us with a rich tool allowing to estimate bounds for compu-
tational complexity of problems arising in different fields of mathematics, in particular, in algebra [4, 10]
and mathematical logic [2, 8, 14, 11, 6]. Sometimes, properties of tilings of some kind can be quite easily
expressed in a formal language, and their description can be more elegant than, say, of Turing machines
(or other computational models). Indeed, to describe a tiling, we only have to say that, for every tile,
there are appropriate tiles on the top and on the right, and that moving right-top or top-right we see
the same tile, while for a Turing machine, to describe just a configuration on some step of computation,
we have to describe a head position, a state, and symbols stored in tape cells.

Here, we consider two tiling problems, known to be, respectively, Π0
1-complete and Σ1

1-complete, and
show examples of their simulation in first-order theories and logics whose langages are enriched with
some extra expressive means [8] but restricted in the number of individual variables, the number of
predicate letters, and their arity.

2. Tiling problems we consider

We may think of a tile as a colored 1 × 1 square, with a fixed orientation. Each edge is colored.
A tile type t consists of a specification of a color for each edge; we write t, t, t, and t for the
colors of, respectively, the left, the right, the top, and the bottom edges of the tiles of type t.

Let T = {t0, . . . , tn} be a set of tile types. Informally, a T -tiling is an arrangement of tiles, whose
types are in T , on a grid so that the edge colors of the adjacent tiles match, both horizontally and
vertically; see the picture below (tile-holders are in the left-bottom corners of tiles).

. . .

. . .

. . .

. . .

...
...

...
...

t4 t1 t0 t1

t2 t5 t6 t7

t0 t0 t1

t4 t8 t6 t7

t1

The fist tiling problem we consider is the following: given a set T = {t0, . . . , tn} of tile types, we are
to determine whether there exists a T -tiling f : N×N→ T such that, for every i, j ∈ N,

(1) f(i, j) = f(i+ 1, j);
(2) f(i, j) = f(i, j + 1).

This problem is Π0
1-complete [1]. The second tiling problem we consider can be obtained from the first

one by adding an extra requirement

(3) the set {j ∈ N : f(0, j) = t0} is infinite,

i.e., claiming that there are infinitely many tiles of type t0 in the leftmost column. This problem is
Σ1

1-complete [9].
68
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3. Classical theories

Assume, for simplicity, a classical first-order language with an infinite supply of monadic predicate
letters P0, P1, P2, . . . and two binary predicate letters H and V . The intending meaning of Pk(x) is
“x is placed with a tile of type tk”; also, H(x, y) means “y is to the right of x”, and V (x, y) means “y is
above x”. To describe an N×N grid, it is sufficient to say

∀x∃y H(x, y), ∀x∃y V (x, y), ∀x∀y (∃z (H(x, z) ∧ V (z, y)) ↔ ∃z (V (x, z) ∧H(z, y)).

Then, we can say that we are given a T -tiling:

• Each tile-holder holds a unique tile: ∀x
n∨

i=0

(Pi(x) ∧
∧
j ̸=i

¬Pj(x)).

• The condition (1) for a T -tiling is satisfied: ∀x
n∧

i=0

(Pi(x) → ∀y (H(x, y) →
∨

ti= tj

Pj(y))).

• The condition (2) for a T -tiling is satisfied: ∀x
n∧

i=0

(Pi(x) → ∀y (V (x, y) →
∨

ti= tj

Pj(y))).

It is not hard to see that the conjunction of the above formulas is satisfiable if, and only if, there exists
a T -tiling f : N×N→ T satisfying conditions (1) and (2). As a result, the Church’s theorem [3] for the
classical first-order logic follows. Since we can simulate all the predicate letters with a single binary one
without adding extra individual variables [15, 16], this gives us a short proof of the known refinement [23]
of the Church’s theorem: the satisfiability problem is undecidable for languages with a single binary
predicate letter and three individual variables. Moreover, we readily obtain undecidability (Σ0

1-hardness)
for infinite classes of theories of a binary predicate, again, with three individual variables [15, 16].

Observe that, with the use of Compactness theorem, the existence of a T -tiling satisfying (1) and (2)
is equivalent to the existance, for every n ∈ N, of an n× n tiling with T -tiles satisfying (1) and (2) for
all appropriate i and j. Therefore, we can use only finitely many tile-holders (but their number must
be unbounded). This observation allows us to simulate T -tilings on finite models and, thus, to obtain
the Trakhtenbrot’s theorem [24, 25] for satisfiability over finite models. Again, modulo some linguistic
machinations, we obtain undecidability (Π0

1-harness) for large classes of theories of a binary predicate
defined by infinite classes of finite models [15, 16].

Notice that undecidability of some the theories — both Σ0
1-hardness and Π0

1-hardness — follow also
from proofs like in [5, 13] by means of a general technique described in [22].

4. Classical theories with extra non-elementary expressive means

Having enriched the language with equality and the operator of transitive closure, we can use the
transitive closure V + of V allowing us to express (3):

∃x∀y (V +(x, y) → ∃z (z ̸= y ∧ V +(y, z) ∧ P0(z))).

Notice that equality can be eliminated if we add the condition of irreflexivity, i.e., ∀x¬V (x, x); also,
variable z can be replaced with x. Then, adding the operator of composition ◦ of binary relations,
we are able to express that moving right-top and top-right, we see the same tile, using the formula
∀x∀y ([V ◦ H](x, y) ↔ [H ◦ V ](x, y)), which contains only two individual variables. Again, using ad-
ditional techniques, we can prove that the satisfiability for languages with a single binary relation,
equality, the operators of transitive closure and composition is Σ1

1-hard even for formulas with two
variables [15]. Sometimes, the operator of transitive closure can be replaced with the operator asserting
the transitivity of a binary relation [16].

5. Some remarks and further results

Examples of the use of tiling problems for obtaining results on the algorithmic complexity of various
logics, both propositional and predicate, can be found in [2, 14, 6, 11, 19, 20, 21, 17, 18]. In particular,
the tiling problems considered here can be used to obtain complexity results for theories of trees [18]
and to prove that modal predicate logics whose Kripke frames are Noetherian orders are Π1

1-hard in
rather poor languages [17]; the latter result gives us an alternate argument for Kripke incompleteness
of the predicate counterpart of the Gödel–Löb logic GL [12].

Acknowledgements. The work on the paper was partially supported by the HSE Academic Fund Pro-
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ON ALGORITHMIC EXPRESSIVITY OF FINITE-VARIABLE FRAGMENTS OF

INTUITIONISTIC MODAL LOGICS

MIKHAIL RYBAKOV AND DMITRY SHKATOV

1. Introduction

Modal and intuitionistic propositional logics are often poly-time embeddable into their own fragments
with a few variables (typically, zero, one, or two), and similar embeddings are sometimes constructed of
fragments of logics with special properties into finite-variable fragments of those logics. The literature
on the topic is quite extensive [2, 27, 11, 12, 4, 29] and includes contributions by the authors of this
paper [3, 14, 15, 16, 17, 18, 20, 19, 21, 22, 23, 24, 25].

As a result, the validity problem for such fragments is as computationally hard as the validity
problem for the full logic. (In general, modal and superintuitionistic propositional logics, even linearly
approximable ones, may have arbitrarily hard fragments with a few variables since, for every set A ⊆ N,
one can construct [26] a linearly approximable logic whose fragment with a few variables (typically zero,
one, or two) recursively encodes A. We obtain here similar embeddings for the intuitionistic modal logics
FS and MIPC, introduced by, respectively, Fisher Servi [7] and Prior [13]. These logics have been
introduced as counterparts of bimodal propositional logics, and can also be viewed as fragments of the
predicate intuitionistic logic QInt (for details, see [10]); we note that this is not the only approach
to constructing modal intuitionistic logics, cf. [5, 6, 28]. The complexity of FS and MIPC remains
unresolved, but the results presented here show that single-variable fragments of these logics have the
same complexity as the full logics.

2. Preliminaries

The intuitionistic modal language contains a countable set P of propositional variables, the constant
⊥, binary connectives ∧, ∨, and →, and unary modal connectives 3 and 2. Formulas are defined in
the usual way. A formula is positive if it does not contain occurrences of ⊥. The set of propositional
variables of a formula φ is denoted by var φ. The result of substituting a formula ψ for a variable p into
a formula φ is denoted by [ψ/p]φ. The modal depth of a formula φ, denoted by md φ, is the maximal
number of nested modal connectives in φ. The length of a formula φ, defined as the number of symbols
in φ (with the binary encoding of variables), is denoted by |φ|.

We define the logics FS and MIPC semantically. A Kripke frame is a pair F = ⟨W,R⟩ where W is
a non-empty set of worlds and R is a partial order on W . An FS-frame is a triple F = ⟨W,R, δ⟩, where
⟨W,R⟩ is a Kripke frame and δ is a map associating with each w ∈ W a structure ⟨∆w, Sw⟩, with ∆w

being a non-empty set of points and Sw a binary relation on ∆w such that, for every w, v ∈W ,

v ∈ R(w) ⇒ ∆w ⊆ ∆v and Sw ⊆ Sv

An FS-frame F = ⟨W,R, δ⟩ is an MIPC-frame if Sw = ∆w ×∆w, for every w ∈ W . A valuation on
an FS-frame ⟨W,R, δ⟩ is a map associating with each w ∈ W and each p ∈ P a subset V (w, p) of ∆w

in such a way that

v ∈ R(w) ⇒ V (w, p) ⊆ V (v, p).

The pair M = ⟨F, V ⟩, where F is an FS-frame and V a valuation on F, is called an FS-model. An
MIPC-model is an FS-model over an MIPC-frame. The truth-relation |= is defined by recursion (here,
M is a model, w ∈W , x ∈ ∆w, and φ is a formula):

• M, w, x |= p ⇋ x ∈ V (w, p) if p ∈ P;
• M, w, x ̸|= ⊥;
• M, w, x |= φ1 ∧ φ2 ⇋ M, w, x |= φ1 and M, w, x |= φ2;
• M, w, x |= φ1 ∨ φ2 ⇋ M, w, x |= φ1 or M, w, x |= φ2;
• M, w, x |= φ1 → φ2 ⇋ M, v, x ̸|= φ1 or M, v, x |= φ2 whenever v ∈ R(w);
• M, w, x |= 3φ1 ⇋ M, w, y |= φ1, for some y ∈ Sw(x);
• M, w, x |= 2φ1 ⇋ M, v, y |= φ1 whenever v ∈ R(w) and y ∈ Sv(x).
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A formula φ is true in a model M (notation: M |= φ) if M, w, x |= φ, for every world w of M and
every point x of w. A formula φ is valid an FS-frame F if φ is true in every model over F. Logics FS and
MIPC are defined as sets of formulas valid on, respectively, every FS-frame and every MIPC-frame.

3. Main results

In this section, we prove that logics FS and MIPC are polynomial-time embeddable into their own
fragments with a single propositional variable. We first poly-time embed these logics into their own
positive fragments. Let φ be a formula and f ∈ P \ var φ. Define

φf = [f/⊥]φ; F1 = 3⩽md φf → f ; F2 = f → 2⩽md φf ; F3 =
∧

p∈var φ

2⩽md φ(f → p),

and put F = F1 ∧ F2 ∧ F3.

Lemma 1. Let φ be a formula, f ∈ P \ var φ, and L ∈ {FS,MIPC}. Then,

φ ∈ L ⇐⇒ F → φf ∈ L.

Since φf and F are both positive, the map e : φ 7→ (F → φf ) embeds FS and MIPC into their own
positive fragments.

We next define a polytime computable function ·∗ from the set of positive formulas to the set of
one-variable positive formulas and show that, for L ∈ {FS,MIPC} and every positive φ,

φ∗ ∈ L ⇐⇒ φ ∈ L.

Hence, for every φ,

φ ∈ L ⇐⇒ e(φ) ∈ L ⇐⇒ e(φ)∗ ∈ L.

The formula φ∗ shall be obtain from φ using a substitution. We next define the formulas that shall
be substituted for propositional variables of φ. These formulas, except G1, G2, and G3, are divided
into ‘levels’, indexed by elements of N; formulas of level 0 are denoted A0

i or B0
i , those of level 1, by

A1
i and B1

i , etc. We begin with G1, G2, and G3, as well as formulas of levels 0 and 1:

G1 = 3p; A1
1 = A0

1 ∧A0
2 → B0

1 ∨B0
2 ;

G2 = 3p→ p; A1
2 = A0

1 ∧B0
1 → A0

2 ∨B0
2 ;

G3 = p→ 2p; A1
3 = A0

1 ∧B0
2 → A0

2 ∨B0
1 ;

A0
1 = G2 → G1 ∨G3; B1

1 = A0
2 ∧B0

1 → A0
1 ∨B0

2 ;
A0

2 = G3 → G1 ∨G2; B1
2 = A0

2 ∧B0
2 → A0

1 ∨B0
1 ;

B0
1 = G1 → G2 ∨G3; B1

3 = B0
1 ∧B0

2 → A0
1 ∨A0

2.
B0

2 = A0
1 ∧A0

2 ∧B0
1 → G1 ∨G2 ∨G3;

We proceed by recursion. Let k ⩾ 1. Suppose the formulas Ak
1 , . . . , A

k
nk

and Bk
1 , . . . , B

k
nk

have been

defined, with nk being the number of formulas of the form Ak
i and, also, the number of formulas of

the form Bk
i (e.g., if k = 1, then nk = 3; the recursive definition for the cases where k ⩾ 2 is to be

given). Define a linear order ≺ on the set (N \ {0, 1})× (N \ {0, 1}) as in the following picture, so that
⟨i, j⟩ ≺ ⟨i′, j′⟩ if, and only if, there exists a path along one or more arrows from ⟨i, j⟩ to ⟨i′, j′⟩:

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

...
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We can then define an enumeration g of the pairs ⟨i, j⟩ ∈ (N \ {0, 1})× (N \ {0, 1}) according to ≺,
i.e., so that g(2, 2) = 1, g(3, 2) = 2, g(3, 3) = 3, g(2, 3) = 4, etc. Now, for every i, j ∈ {2, . . . , nk}, define

Ak+1
g(i,j) = Ak

1 → Bk
1 ∨Ak

i ∨Bk
j ; Bk+1

g(i,j) = Bk
1 → Ak

1 ∨Ak
i ∨Bk

j ,

and let nk+1 be the number of the formulas of the form Ak+1
i (which is the same as the number of

formulas of the form Bk+1
i ) so defined; notice that nk+1 = (nk − 1)2. This completes the recursive

definition of Ak
i and Bk

i .
Next, put

l0 = |A0
1|+ |B0

1 |+ |A0
2|+ |B0

2 |.

Lemma 2. There exists k0 ∈ N such that nk > l0 · 5k whenever k ⩾ k0.

Now, let φ be a positive formula with var φ = {p1, . . . , ps}. Let kφ be the least integer k such that
|φ| < l0 · 5k. By Lemma 2, nkφ+k0

> l0 · 5kφ+k0 ; hence,

nkφ+k0 > l0 · 5kφ+k0 > 5k0 · |φ| > |φ| ⩾ s.

Lastly, define φ∗ to be the result of substituting into φ, for every r ∈ {1, . . . , s}, the formula

A
kφ+k0
r ∨Bkφ+k0

r for the variable pr (this substitution is well defined since nkφ+k0 > s).

We next show that φ∗ is poly-time computable from φ.

Lemma 3. For every k ⩾ 0 and every i ∈ {1, . . . , nk},

|Ak
i | < l0 · 5k and |Bk

i | < l0 · 5k.

Lemma 4. The formula φ∗ is computable in time polynomial in |φ|.

Proof. It suffices to show that |φ∗| is polynomial in |φ|. Since kφ is the least integer k such that
|φ| < l0 · 5k, surely l0 · 5kφ−1 ⩽ |φ|, and so

l0 · 5kφ+k0 ⩽ 5k0+1|φ|.

By Lemma 3, for every i ∈ {1, . . . , nkφ+k0
},

|Akφ+k0

i | < l0 · 5kφ+k0 ⩽ 5k0+1|φ| and |Bkφ+k0

i | < l0 · 5kφ+k0 ⩽ 5k0+1|φ|.

Hence, |φ∗| < 2 · 5k0+1|φ|2. □

To obtain the desired result, it remains to show the following:

Lemma 5. Let L ∈ {FS,MIPC}. Then, for every positive formula φ,

φ ∈ L ⇐⇒ φ∗ ∈ L.

From Lemmas 1, 4, and 5, we immediately obtain the following:

Theorem 6. Let L ∈ {FS,MIPC}. Then, there exists a polynomial-time computable function embed-
ding L into its own positive one-variable fragment.

Corollary 7. Let L ∈ {FS,MIPC}. Then, the positive one-variable fragment of L is polytime-
equivalent to L.

The results presented here are not immediately applicable to obtaining the computational complexity
of finite-variable fragments of intuitionistic modal logics since the complexity of full logics remains
unknown (we are only aware of decidability results [9, 31, 30, 1, 8] for modal intuitionistic logics).

Acknowledgements. The work on this paper, carried out at the Institute for Information Transmission
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MULTI-AGENT MODAL LOGIC AND UNCERTAIN INFORMATION

VLADIMIR V. RYBAKOV

Abstract

This paper studies relational Kripke models for computation truth values of formulas in some ex-
tended logical language. The multi-agent modal language is extended by introduction a new modal
operation D(α, β). The truth of this operation is determined in a way by implicit information: it is
true only if the number of states where the formula α is true is strictly less than the number of states
where the formula β is true. From mathematical point of view, the paper investigates satisfiability
problem for formulas in such special language, we construct a mathematical algorithm verifying their
satisfiability.

Keywords: knowledge, information, modal logics, relational Kripke models, satisfiability problem

General comment

Computer science and Information Sciences use technique of mathematical symbolic logic; e.g. logic is
an effective tool in research and development of software, analysis of correctness the information. Several
special domains are very useful here, for example it is the temporal logic (cf. Abadi M., Manna Z. Temporal
logic programming, multi-modal logics, multi-agents’ logics (cf. Ramy Shahin, Based Event Languages for the
Development of Reactive Application Systems, – Towards Modal Software Engineering). For such applications
some special variations of non-classical logic have been developed, e.g. it is the linear temporal logic LTL, which
got to be very popular in computer science immediately after its introduction. Multi-agents’ logics are often
used in areas of analysis various obtained information, on its reliability and safety.

Results

To briefly define used notation and definition, to make extended abstract easy readable; we start from
semantic models. We first fix an interval partitioning In of the set of all natural numbers N , so In is a set of
indexes and

N =
⋃
i∈In

[ci, ci1 ], ci < ci+1.

That will be our base set — worlds, states.

The valuations V of a set Prop of propositional variables (letters) in such frames FFP defined as follows,

∀p ∈ Prop, V (p) ⊆
⋃
i

[ci, ci1 ].

The starting language of our logical system is the standard modal language of multi-agents’ modal logic, that
is it contains a finite number of modalities like 3j for any agent j. Any 3j refers to some linear accessibility
relation which each is a part of standard linear order on segments [ci, ci1 ] and generally speaking is its own for
each j.

Besides our approach uses introduction of a new modal binary operation D(α, β) with the following meaning
and definition:

(MFP , x) |=Vj D(α, β) ⇐⇒ ∃i ∈ N : x ∈ [ci, ci+1]

and the number of states on the segment [ci, ci+1] in which the formula α is true w.r.t. valuation Vj , is strictly
less then the number of states of this segment at which the formula β is true.

The binary logical operation D(α, β) is used in an unusual way. We may interpret it as an expert assessments;
that is a sort of comparison statements in an implicit situation – when precise amount of states where the
statements are true is not known in precise numerical value in unknown.

Theorem 1. A formula F is satisfiable in a model introduced earlier (cf. MFP = ⟨
⋃

i∈In[ci, ci1 ]) iff it is

satisfiable in a special model based at a frame of kind FFP in its interval [c1, c2] size of which is computable
from the size of F .
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Using this theorem, as a consequence we obtain

Theorem 2. The problem of satisfiability for formulas D(x, y) in the logic LFP is decidable.

It is important to say here that we do not claim such results for a kind of whole logic which would include
arbitrary formulas of kind D(α, β). We consider here, in the case, only formulas α and β which themselves
already do not include formulas of sort D(x, y). That is a special precaution in order to avoid infinite loop in
proofs which was made in the very beginning of this research. We compare pure modal formulas with unknown
amount of satisfying them states.

Acknowledgements. This work is supported by by the Russian Scientific Foundation (Project No.23-21-00213)
and by the Krasnoyarsk Mathematical Center and financed by the Ministry of Science and Higher Education
of the Russian Federation (Agreement No. 075-02-2023-936).
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SOME REMARKS ON WELL-STRUCTURED TRANSITION SYSTEMS

NIKOLAY V. SHILOV

1. Well-pre-ordered Transition Systems

Let D be a set. A pre-order (or quasi-order) is a reflexive and transitive binary relation on D. A well-pre-
order (or well-quasi-order) is a pre-order ⪯ such that every infinite sequence d0, . . . di, . . . in D contains a pair
of elements dm and dn so that m < n and dm ⪯ dn.

For sake of completeness, let us extend some standard concepts from ordered sets onto pre-ordered sets. Let
(D,⪯) be a well-pre-ordered set. An ideal (or upward-cone or cone) is an upward closed subset of D, i.e., any
set I ⊆ D such that for all d′, d′′ ∈ D, if d′ ⪯ d′′ and d′ ∈ I then d′′ ∈ I. Every d ∈ I generates the upward
cone (↑ d) ≡ {e ∈ D : d ⪯ e}. For every set S ⊆ D any element d ∈ S is a minimal element of S, if for
every element s ∈ S either d ⪯ s or d and s are non-comparable. For any subset S ⊆ D, the set of its minimal
elements is min(S); a basis of S is any subset B ⊆ S such that for every s ∈ S there exists an element b ∈ B
such that b ⪯ s.

Let us present some algebraic easy to prove properties of well-pre-orders [1, 7]. Let us fix any well-pre-
ordered set (D, preceq). Firstly, (D,⪯) is well-founded, i.e., any infinite strictly decreasing sequence of elements
of D is impossible; moreover, every infinite sequence in (D,⪯) contains an infinite non-decreasing subsequence
of comparable elements. Next, every subset S ⊆ D provided with the pre-order ⪯ is well-pre-ordered set
also. Third, every S ⊆ D has a finite basis that comprises all minimal elements min(S); in particular, every
ideal I has a finite basis min(I), and I =

⋃
d∈min(I)(↑ d). Finally, every non-decreasing sequence of ideals

I0 ⊆ · · · ⊆ Ii ⊆ . . . eventually stabilizes, i.e., there is some k ≥ 0 such that Im = In for all m,n ≥ k.
Let Act be any fixed finite alphabet of action symbols. A transition system (or Kripke frame) is a tuple

(D,R), where the domain D is any non-empty set of elements (that are called states or worlds), and the
interpretation R is a total mapping R : Act → 2D×D. A run (in the frame) is a maximal sequence of states
s0 . . . sisi+1 . . . such that for all adjacent states within the sequence (si, si+1) ∈ R(a) for some a ∈ Act. A
well-pre-ordered transition system (WPTS) is a triple (D,⪯, R) such that (D,⪯) is a well-pre-ordered set and
(D,R) is a Kripke frame.

There are 4 options for compatibility of the well-pre-order ⪯ and the interpretation R(a) of an action symbol
a ∈ Act, they are depicted in Fig. 4 in logic, algebraic, and diagram notation. The terminology introduced in
this figure can be explained as follows. The adjectives upward and downward have been introduced in [7], they
are applicable to ⪯ and have an explicit and evident mnemonics. The adjective future is about states after
action(s), i.e., future states, while states before an action are the past states.

In [9] the compatibility conditions are called Fisher Servi conditions because of intuitionistic modal logic
suggested by G. Fisher Servi [8] (see also [14]): semantics of Fisher Servi logic is defined in partially ordered
transition systems (D,⪯, R), where ⪯ is a partial order which is upward and downward compatible with R.

Figure 4. Pre-order-and-transition compatibility
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But recently we learned from [6] that very similar compatibility conditions were introduced and studied by the
same time by other researchers (ex., [5]). Also, in recent papers on well-structured transition system (ex., [3])
the conditions and their variations are referred as monotony conditions. Because of it, let us refer the conditions
presented in the Fig. 4.

An upward compatible well-pre-ordered transition system is calledWell-Structured Transition System (WSTS).
Extensive case study and some generic examples of WSTS with a single action symbol can be found in the foun-
dational papers [1, 7]. Variations of WSTS is a topic for further studies in the context of formal verification:
for example, paper [3] presents results based on assumption that monotony should be applied to states that are
reachable one from another.

Simulation and bisimulation [12] can be defined in terms of compatibility conditions [9].

• Future upward compatibility with a binary relation ⪯ means that the relation is a simulation relation
on the states of the transition system (D,R).

• Future downward compatibility with the inverse of a binary relation ⪯ means that the inverse relation
(⪯)− is a simulation relation on the states of the transition system (D,R).

• Future upward compatibility with an equivalence relation ≃ means that the relation ≃ is a bisimulation
on the states of the transition system (D,R).

2. Model Checking in Well-Structured Transition Systems

Model checking is an algorithmic problem to find (to compute) semantics of a given formula (of some given
logic) in a given model (for this logic). In [9] the following Theorem had been proven.

Theorem 1. The model checking problem is decidable for disjunctive formulas of the Propositional µ-Calculus
in intuitionistic models over well-structured transition systems with decidable well-pre-order and tractable past.

The original formulation in [9] differs from the presented here, but actually is equivalent. Let us define below
concepts that are used in the Theorem statement.

Let us start with definitions for decidable well-pre-order and tractable past. The decidability for the well-pre-
order means that ⪯ is decidable as a binary relation on states. Tractable past [9] means that for any a ∈ Act
the function λs ∈ D : min{t ∈ D : (t, s) ∈ R(a)} is computable.

Then let us define intuitionistic models. Let Prp be an alphabet of propositional variables. A (Kripke) model
(or labeled transition system) over a frame F = (D,R) (any well-pre-ordered or well-structured transition system
(D,⪯, R) in particular) is F together with interpretation (or valuation) I : Prp→ 2D of individual propositional
variables by sets of states. Interpretation is said to be intuitianistic, if the frame is a well-pre-ordered transition
system and I(p) is an upward-cone (i.e., an ideal) for every propositional variable p ∈ Prp. A model (labeled
transition system) is said to be intuitianistic, if has an intuitianistic interpretation.

The propositional µ-Calculus of D. Kozen (µC) [10, 11] is a very powerful propositional program logic with
fix-points. It is widely used for specification and verification of properties of finite state systems.

The syntax of µC consists of formulae, a context-free definition of formulae follows:

ϕ ::= p | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ([a]ϕ) | (⟨a⟩ϕ) | (νp. ϕ) |(µp. ϕ)
where metavariables ϕ, p, and a range over formulae, propositional variables in Prp, and action symbols in Act
respectively. The only context constraint is the following: no instances of a bound (by µ or ν) propositional
variables are in the range of odd number of negations.

Disjunctive formulae of µC don’t use negation, conjunction,box-modality, the construct of the greatest fix-
point and, a context-free definition of disjunctive formulae follows: ϕ ::= p | (ϕ ∨ ϕ) | (⟨a⟩ϕ) |(µp. ϕ).

The semantics of µC is defined in labeled transition systems. In every model M = (D,R, I) where (D,R) is
a Kripke frame, and I is an interpretation, the semantics M(ϕ) of any formula ϕ is a subset of the domain D
that is defined by induction on the formula structure as follows.

• M(p) = I(p), M(¬ϕ) = D \M(ϕ),
M(ψ ∧ θ) =M(ψ) ∩M(θ), and M(ψ ∨ θ) =M(ψ) ∪M(θ)

• M([a]ψ) = {s : for every t ∈ D, if(s, t) ∈ R(a) then t ∈M(ψ)},
and M(⟨a⟩ψ) = {s : for some t ∈ D (s, t) ∈ R(a) and t ∈M(ψ)}

• M(νp. ψ) = the greatest fix-point of the mapping λS ⊆ D .
(
MS/p(ψ)

)
,

and M(µp. ψ) = the least fix-point of the mapping λS ⊆ D .
(
MS/p(ψ)

)
,

where MS/p(ψ) is the model that agrees with M everywhere but p, MS/p(p) = IS/p(p) = S

3. Relations to Metacompilation and Speculative Computations

Metacompilation [13] is an approach to program analysis designed to detect some cases of program (infinite)
looping basing on either bisimulation (i.e., models with well-structured transition systems) or generalization
and speculative computations (to be explained later).

In this section we assume that the set of states D and interpretations R and I for action symbols Act and
propositional variables Prp are fixed; because of this convention, let us write in this section
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• s a→ t instead (s, t) ∈ R(a),
• and p(s) instead s ∈ I(p).

Let us define a simple programming language. A program α is a finite set of labeled operators of two kinds:

• labeled assignment operator l : a goto J where l ∈ N is a natural number (label marking/labeling this
operator), a ∈ Act is an action (the body/action of the operator), and J ⊆ N is a finite set of natural
numbers (called jumps of the operator, may be the empty set)

• labeled conditional (choice) operator l : if p then J else K where l ∈ N is a natural number (label
marking/labeling this operator), p ∈ Prp is a condition (the condition/test of the operator), and
J,K ⊆ N are finite sets of natural numbers (called true/positive-jumps and false/negative-jumps of the
operator, may be the empty set any or both).

The initial label (of α) is the least label that marks any labeled operator in the program; an exit label (of α) is
any label that has instance(s) in α but does not mark any labeled operator in α.

To define semantics for programs, let us fix a program α.
A configuration (of the program α) is any pair (l, s) where l is a label (i.e., a natural number) and s is a

state.

• A firing of a labeled assignment operator (l : a goto J) ∈ α is any pair of configurations (l, s)(j, t) such

that s
a→ t and j ∈ J .

• A positive firing of a labeled choice operator (l : if p then J else K) ∈ α is any pair of configurations
(l, s)(j, s) such that p(s) and j ∈ J .

• A negative firing of a labeled choice operator (l : if p then J else K) ∈ α is any pair of configurations
(l, s)(k, s) such that not p(s) but k ∈ K.

• A firing of a labeled conditional (choice) operator (l : if p then J else K) ∈ α is any it’s positive or
negative firing.

A firing (of α) is any firing of any operator of the program.
A run (of α) is any (finite or infinite) sequence of configurations (l0, s0) . . . (ln, sn)(ln+1, sn+1) . . . such that

for any consecutive pair of configurations (ln, sn)(ln+1, sn+1) within this sequence is a firing of the program α;
configuration (l0, s0) is called starting configuration of the run, label l0 – its starting label, and state s0 – its
starting state; if the run is finite and configuration (ln+1, sn+1) is the last in the run, then (ln+1, sn+1) is called
the ending configuration, label ln+1 – its ending label, and state sn+1 – its ending state.

• An initial run is any run starting in the initial label.
• A terminal run is any finite run ending in any exit label.
• A looping run (or diverging run) is any infinite run.
• A complete run is either a terminal or a looping run.
• Execution is any initial complete run.
• An executional run is any run that is a sub-run (i.e., a sub-word) of some execution.

Let us extend the definition of bisimulation from frames to models as follows: full bisimulation is any
bisimulation ≃ such that for any two states if s ≃ t then p(s)⇔ p(t) for every propositional variable.

Lemma 2. For any program α, any label l, states s, t, and any full bisimulation ≃, if s ≃ t and α has a
diverging run from (l, s) than it has a diverging run from (l, t).

Generalization is any binary relation
gen
=⇒ on D (i.e.,

gen⇒⊆ D × D). – Remark that we use asymmetric
notation for generalization because we do not assume the relation being symmetric (or being reflexive, transitive,

antisymmetric, etc.). If
gen
=⇒ is a generalization, then for any labels l, k, any states s, t let us write (l, s)

gen
=⇒ (k, t)

if l = k and s
gen
=⇒ t. Let us say that a generalization

gen
=⇒ is sound (for our fixed program α) if for any states

s, t, u ∈ D and any labels l, k, s
gen
=⇒ t and firing (l, t)(k, u) together imply that there exists a state v ∈ D

such that v
gen
=⇒ u and (l, s)(k, v) is a firing also; in this definition the firing (l, t)(k, u) is called generalized or

speculative, while the firing (l, s)(k, v) is called an actual firing ; in case of sound generalization any speculative
firing always should be supported by some actual one. – It is easy to see that soundness is future downward
compatibility from Fig. 4.

Lemma 3. For any program α, any sound generalization
gen
=⇒, any label l, and any actual state s ∈ D, and a

generalized state t ∈ D such that s
gen
=⇒ t, if there exists a finite speculative run ρ starting and ending in (l, t),

then α has an infinite actual run that is generalizable to the infinite speculative run ρω (i.e., the infinite iteration
of ρ).

The following method is based on the above Lemma 3 is known as metacompilation.

Precondition: α is a program, (k, r) is its configuration, and Gen is a set of sound generalizations.
Procedure: Let us construct all runs of α starting in (k, r) in depth-first manner. As soon as we

detected in any path from (k, r) any two configurations (l, s) and (l, v) on a run that both can be

generalized (using any generalization
gen
=⇒ in Gen) to some speculative configuration (l, t), (l, s)

gen
=⇒ (l, t)

and (l, v)
gen
=⇒ (l, t), such that there exists a speculative run starting and ending in this speculative

configuration (l, t), then we may mark both configurations (l, s) and (l, v) in by a special label loop.
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Invariant: For any configuration (l, s) reachable from (k, r), if the configuration is marked by loop, then
there exists a looping run starting in (l, s).

Roughly speaking, metacopilation is attempting something á la cross-world predication [4]: it tries to run
speculative computations but then make conclusions about actual ones.
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NONASSOCIATIVE INTUITIONISTIC MULTIPLICATIVE EXPONENTIAL

LINEAR LOGIC AND ITS EXTENSION

YIHENG WANG, XUE GE, AND ZHE LIN

Linear logic was introduced by Jean-Yves Girard [1] in 1987. Due to the constructive property and strong
representation ability, linear logic is closely connected with theoretical computer science and linguistics, such
as logic programming and natural language processing [2, 3, 4, 5, 6, 7]. The decision problems of linear
logic fragments have been studied by many researchers for years [8, 9, 10]. As one of the most important
fragments in linear logic, the decidability problem of multiplicative exponential linear logic (MELL) is a long-
time open question. What makes MELL matter is the relationship between it and the reachability problem
in computer science. It is known that the reachability problem for Petri nets [11], which can be encoded into
MELL [12], is equivalent to the reachability problem of vector addition systems with states (VASS) [13]. The
branching VASS (BVASS) [14] is a model of counter machines which matches MELL. In terms of the decidability
problem of MELL, Ranko Lazić and Sylvain Schmitz [15] proved that the decidability problem of MELL is
equivalent to the reachability problem for BVASS and its complexity is at least TOWER-hard. A.P. Kopylov
[10] proved that the MELL with weakening rule i.e., affine logic, is decidable. Lutz Straßburger [16] showed that
a conservative extension of MELL plus mix, plus nullary mix by a self-dual noncommutative connective called
NEL is undecidable. Recently, Katalin Bimbó [17] gave the sequent calculus system of propositional MELL
and its extension: contraction-free propositional MELL and claimed that propositional MELL is decidable.
However, Lutz Straßburger [18] pointed out that there are mistakes in Bimbó’s proof. He showed that the
MELL with contraction is decidable in the same paper. Yet, the reachability problem of BVASS, or equivalently
the decidability problem of MELL still remains open.

We continue this line of research. The main motivation of this paper comes from hints from some existing
results related to the decidability problem of MELL. Taking a brief look at the history, one has that Patrick
Lincoln et al. [8] proved propositional linear logic (LL) and its intuitionistic version (ILL) are undecidable. Re-
cently, Hiromi Tanaka [19] showed the undecidability of the nonassociative noncommutative intuitionistic linear
logic (NACILL) and its extensions with exchange and contraction rules. By encoding the finitary consequence
relation in full nonassociative Lambek calculus (FNL) into the provability in NACILL, Tanaka showed that
NACILL is a strong conservative extension of FNL. The nonassociative noncommutative linear logic (NACLL)
is undecidable as well. One can see that there seems to be a corresponding relationship among these results.
LL and ILL are undecidable, while their nonassociative and noncommutative versions are undecidable too.
Further, it is clear that MELL and IMELL are the additive-free versions of LL and ILL, while nonassociative
intuitionistic MELL (NIMELL) is the additive-free version of NACILL. Since LL and NACLL together with
ILL and NACILL are all undecidable, it may indicate that there is also a relationship between NIMELL and
IMELL. Therefore, research about the decidability problem of NIMELL is quite natural if we want to know the
answer to the MELL decidability open question.

In this paper, We emphasize the decision problems of the fragments of the nonassociative propositional linear
logic. By showing the cut elimination result for NIMELL with assumption Φ, we can prove the consequence
relation of NIMELL is decidable in polynomial time. Further, we prove the interpolation lemma for NIMELL and
its distributive lattice extension NDILL. We show that NDILL is decidable as well. Further up to the knowledge
of the authors, the cut-free sequent calculus, interpolation lemma, and decidability problem of NIMELL are
not well investigated. This paper could be regarded as a beneficial supplement and clue to the current research
about the MELL decidability problem. Our method is inspired by [20, 21].

Definition 1. The set of formulas F and set of formula structures FS are defined inductively as follows :

F ∋ α ::= p |!α | α⊗ β | β ← α | α→ β

where p ∈ Var

FS ∋ Γ ::= α | Γ,∆
A sequent is an expression of the form Γ⇒ α where Γ is a formula structure and α is a formula. A context

is a formula structure Γ[−] with a designated position [−] which can be filled with a formula structure. In
particular, a single position [−] is a context. Let Γ[α] be a formula structure obtained from Γ[−] by substituting
formula α for [−]. By !Γ, we denote a new formula structure by replacing every formula α in Γ with !α.

Definition 2. The Gentzen-style sequent calculus NIMELL consists of the following axiom and rules:

(1) Axiom:

(Id) α⇒ α

81
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(2) Logical rules:
∆⇒ α; Γ[β]⇒ γ

Γ[∆, (α→ β)]⇒ γ
(→ L)

α,Γ⇒ β

Γ⇒ α→ β
(→ R)

Γ[α]⇒ γ; ∆⇒ β

Γ[(β ← α),∆]⇒ γ
(← L)

Γ, β ⇒ α

Γ⇒ β ← α
(← R)

Γ[α, β]⇒ γ

Γ[α⊗ β]⇒ γ
(⊗L) Γ⇒ α; ∆⇒ β

Γ,∆⇒ α⊗ β (⊗R)

Γ[β]⇒ α

Γ[!β]⇒ α
(!L)

!Γ⇒ α

!Γ⇒!α
(!R)

Γ[!∆, !∆]⇒ β

Γ[!∆]⇒ β
(Con!)

Γ[∆]⇒ β

Γ[∆, !Σ]⇒ β
(Weak!)

(3) Cut rule:
∆⇒ α; Γ[α]⇒ β

Γ[∆]⇒ β
(Cut)

A sequent Γ⇒ α is provable in NIMELL, denoted by ⊢NIMELL Γ⇒ α, if there is a derivation of Γ⇒ α in
NIMELL.

Remark 3. The exponential ! here only allows contraction and weakening rule, which means it is a subexpo-
nential rather than a full-power exponential, such as the exponential in Tanaka’s NACILL [19].

We assume the non-logical assumption is of the form α ⇒ β. For a set Φ of sequents α ⇒ β, NIMELL(Φ)
denotes the system of NIMELL with all formulas from Φ as assumptions. By Φ-restricted cut rule, we mean
the following rule:

Γ2 ⇒ α Γ1[β]⇒ γ

Γ1[Γ2]⇒ γ
(Φ−Cut)

where α⇒ β is an assumption in Φ.
We define a related sequent calculus of NIMELL(Φ), denoted by NIMELL(Φ)r: axiom and rules of inference

are simply the rules of NIMELL(Φ) together with the Φ-restricted cut rule. By showing the cut elimination
result for NIMELL(Φ)r, one has the extended subformula property (cf. [22]).

Theorem 4 (Cut Elimination). Every sequent which is provable in NIMELL(Φ)r can be proved also in NIMELL(Φ)r

without any applications of (Cut) rule.

Corollary 5 (Extended Subformula Property). For any provable sequent Γ ⇒ α in NIMELL(Φ), there exists
a proof of Γ⇒ α such that all formulas appearing in the proof are subformulas of formulas in Φ or Γ⇒ α.

Let T be a finite set of formulas closed under subformulas which contains all formulas appearing in Φ. A
T -sequent Γ⇒ α is a sequent such that all formulas appearing in Γ and α belong to T . By the above results, one
gets a decision procedure for the consequence relation of NIMELL and shows that it is decidable in polynomial
time.

Definition 6. Assume Φ is finite. Let T! = {!α | α ∈ T}, T ! = T ∪ T!. A sequent is said to be basic if it is
a T !-sequent of the form α, β ⇒ γ or α ⇒ β. We describe an effective procedure producing all basic sequents
provable in NIMELL(Φ). Let S0 consists of all T !-sequents from Φ, all T !-sequents of the form (Id), and all
T !-sequents of the form:

α, (α→ β)⇒ β (β ← α), β ⇒ α α, β ⇒ α⊗ β
Assume Sn has already been defined. Sn+1 is Sn enriched with all sequents arising by the following rules:

(1) If (!α, !α⇒ β) ∈ Sn and !α ∈ T !, then (!α⇒ β) ∈ Sn+1;
(2) If α⇒ β ∈ Sn and !γ ∈ T !, then α, !γ ⇒ β ∈ Sn+1;
(3) If α⇒ β ∈ Sn, then !α⇒ β ∈ Sn+1;
(4) If !α⇒ β ∈ Sn, then !α⇒!β ∈ Sn+1;
(5) If (α, β ⇒ γ) ∈ Sn and α⊗ β ∈ T !, then (α⊗ β ⇒ γ) ∈ Sn+1;
(6) If (α, β ⇒ γ) ∈ Sn and (α→ γ) ∈ T !, then (β ⇒ α→ γ) ∈ Sn+1;
(7) If (α, β ⇒ γ) ∈ Sn and (γ ← β) ∈ T !, then (α⇒ γ ← β) ∈ Sn+1;
(8) If (α⇒ β) ∈ Sn and (σ, β ⇒ γ) ∈ Sn, then (σ, α⇒ γ) ∈ Sn+1;
(9) If (α⇒ β) ∈ Sn and (β, σ ⇒ γ) ∈ Sn, then (α, σ ⇒ γ) ∈ Sn+1;

(10) If (Γ⇒ β) ∈ Sn and (β ⇒ γ) ∈ Sn, then (Γ⇒ γ) ∈ Sn+1.

Obviously, Sn ⊆ Sn+1 for all n ≥ 0. It is also noted that Sn is a finite set of basic sequents. Let ST be the
union of all Sn. The rules (1)-(7) are (Con!), (Weak!), (!L), (!R), (⊗L), (→R) and (←R) restricted to basic
sequents, and (8)-(10) describe the closure of basic sequents under (Cut) rule.

Lemma 7. ST can be constructed in polynomial time.

Lemma 8. Let S(T ) be a calculus which contains all the sequents from ST but with the only rule of inference
(Cut), then every basic sequent provable in S(T ) belongs to ST .
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Lemma 9 (S(T ) Interpolation). If ⊢S(T ) Γ[∆] ⇒ α, then there exists a γ ∈ T ! such that ⊢S(T ) ∆ ⇒ γ and
⊢S(T ) Γ[γ]⇒ α.

By Γ ⇒T ! α, we mean Γ ⇒ α has a proof in NIMELL(Φ) consisting of only T !-sequents for any T !-sequent
Γ⇒ α.

Lemma 10. For any T !-sequent Γ⇒ α, Γ⇒T ! α if and only if ⊢S(T ) Γ⇒ α.

Theorem 11 (P-time Decidable). If Φ is finite, then NIMELL(Φ) is decidable in polynomial time.

Further, one can prove the interpolation lemma for the distributive lattice extension of NIMELL and therefore
has decidability. Accordingly, the sequent system for NDILL is obtained by adding axiom (D) α&(β ⊕ γ) ⇔
(α&β)⊕ (α&γ) and lattice rules:

Γ[αi]⇒ β

Γ[α1&α2]⇒ β
(&L)

Γ⇒ α Γ⇒ β

Γ⇒ α&β
(&R)

Γ[α1]⇒ β Γ[α2]⇒ β

Γ[α1 ⊕ α2]⇒ β
(⊕L) Γ⇒ αi

Γ⇒ α1 ⊕ α2
(⊕R)

where the subscript i in (&L) and (⊕R) equals to 1 or 2.

Remark 12. E. Blaisdell et al [23] studied a system (called acLLΣ) that is relevant to NDILL and prove
undecidability results for its fragments. The difference between these two systems is that NDILL owns the
distributive lattice rule but another one only owns the pure lattice rule, which is the key to the decidability of
the former while the undecidability of the latter.

Given a sequent like α⇒ β, we define a set F to be all subformulas of formulas of α and β. We further define
a set !F : if α ∈ F , then !α ∈!F ; If !α, !β ∈ F , then !α⊗!β ∈!F . Obviously, F and !F are finite. Let T be the
union of F and !F . Let T be the set T closed on the operations & and ⊕. Clearly, T is finite up to equivalence.

In what follows, we will prove interpolation lemmas for NDILL(Φ) and NIMELL(Φ). Such lemmas first came
from W. Buszkowski [24] and later be discussed by Z. Lin [20].

Lemma 13 (NDILL(Φ) Interpolation). If ⊢NDILL(Φ) Γ[∆] ⇒ α, then there is a γ ∈ T such that ⊢NDILL(Φ)

∆⇒ γ and ⊢NDILL(Φ) Γ[γ]⇒ α where T be the set of all subformulas of formulas of Γ[∆]⇒ α.

Corollary 14 (NIMELL(Φ) Interpolation). If ⊢NIMELL(Φ) Γ[∆] ⇒ α, then there is a γ ∈ T such that
⊢NIMELL(Φ) ∆⇒ γ and ⊢NIMELL(Φ) Γ[γ]⇒ α where T be the set of all subformulas of formulas of Γ[∆]⇒ α.

Theorem 15 (NDILL(Φ) decidable). If Φ is finite, then NDILL(Φ) is decidable.
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[13] C Reutenauer. Aspects mathématiques des réseaux de Petri. Elsevier Masson, 1989.
[14] P. De. Groote, B. Guillaume, and S. Salvati. Vector addition tree automata. Proceedings of the 19th Annual IEEE

Symposium on Logic in Computer Science, 64-73, 2004.
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INVOLUTIVE COMMUTATIVE RESIDUATED LATTICE WITHOUT UNIT:

LOGICS AND DECIDABILITY

YIHENG WANG AND ZHE LIN

The residuated lattice-ordered monoid, or residuated lattice for short, was first introduced by Ward, et al.
[1, 2, 3] in the early 20th century. A residuated lattice is a structure F = (A,∧,∨, ·, \, /, 1) such that (A,∧,∨) is
a lattice, (A, ·, \, /, 1) is a residuated monoid where 1 is the unit for fusion “·”, and \, ·, / are binary operations
satisfying the following law of residuation:

(res) a · b ≤ c iff b ≤ a\c iff a ≤ c/b.
The class of all residuated lattices will be denoted byRL. The study ofRL can be traced back to the work of W.
Krull [1] and that of Morgan Ward and R. P. Dilworth [2, 3]. The theory has been studied in several branches,
including lattice-ordered groups, substructural logics, and mathematical linguistics. The class of all residuated
semigroups is denoted by RSG. RL without the unit 1 denoted by RL− forms the residuated lattice-ordered
semigroup. RSG, RL−, and their non-associative variants are widely used as the algebraic base of categorial
grammars for natural language processing (cf. [4, 5, 6]). The commutative RL (RL−), denoted by cRL (cRL−)
is RL (RL−) additionally satisfying the commutativity for “·” i.e. a · b = b · a. Consequently in cRL (cRL−),
a\b = b/a.

There are lots of literature on RL enriched with an involutive negation (in) denoted by InRL (cf. [7, 8]).
An involutive negation over RL and RL− is a unary operation satisfying the following two conditions: (in)
a\¬b = ¬a/b and (dn) ¬¬a = a (cf. [7]). Let 0 = ¬1. Then a\0 = ¬a/1 = ¬a. Thus ¬a = a\0 = 0/a. Therefore
the contraposition (ctr) follows: if a ≤ b, then ¬b ≤ ¬a. In cRL, (in) is equivalent to (cin): a\¬b = b\¬a.
If one replaces (dn) by a ≤ ¬¬a, then one obtains the quasi-involutive negation. Hereafter we denote IncRL
and IncRL− for involutive cRL and cRL− respectively. Evidently, quasi-involutive negation and involutive
negation are minimal negation and De Morgan negation respectively. De Morgan negation is a unary operation
satisfying (ctr) and (dn) (cf. [9]). If one omits ¬¬a ≤ a from a De Morgan negation, then one obtains the
minimal negation. The concept of minimal negation was introduced by Kolmogoroff [10], but it is systematically
studied by Johansson [11]. De Morgan algebras (also called “quasi-Boolean algebras”), which are (not necessarily
bounded) distributive lattices with a De Morgan negation, were introduced by Bialynicki-Birula and Rasiowa
[12]. This type of algebra was also investigated by Moisil [13] under the term De Morgan lattices, and by
Kalman [14] under the term distributive i-lattices.

Substructural logics are the logics whose algebraic models are residuated structures. The research of sub-
structural logics and residuated lattices has been risen by Ono and other people (cf. [6, 15, 16, 17]) over the
last four decades. The logic of RL under the name full Lambek calculus (FL), is a lattice extension of Lambek
calculus (L) with the unit. Negative extensions of substructural logics corresponding to RL and its variants are
considered in different literatures. IncRL (also named FLe-monoids) are studied by Jenei and Ono [8]. Galatos
and Jipsen [18] show that InRL and its nonassociative variants have the finite model property. Cut-free sequent
calculi for the corresponding algebras are presented in the same paper. Buszkowski [19] considers involutive
residuated groupoids. The logic of these algebras is called classical nonassociative Lambek Calculus (CNL).
Cut-free one side sequent calculus is presented and polynomial decidability is proved for CNL and CNL with
the unit (CNL1).

We continue this line of research. We consider (quasi) involutive negations over cRL−. cRL− and cRL
are essentially different. For instance, the inequation a/(b/b) ≤ a holds in cRL but not in cRL−. Moreover
a · ¬a ≤ 0 is a basic law in IncRL. However, this expression lacks sense in IncRL− without 0. Further
up to the knowledge of the authors, the algebraic properties of IncRL− are not well investigated. And the
logical characterization, cut-free sequent calculus, and the decidability results of the corresponding logic remain
open. Clearly, these results cannot be easily adapted from the ones for IncRL. In the present paper, we study
IncRL− and its corresponding logic InFL−

e . A sequent calculus for InFL−
e is presented and the decidability

results are established. Our method is inspired by Lin et al. [20].

Definition 1. An algebra F = (A,∧,∨, ·, \,¬) is a IncRL− if and only if:

• (A,∧,∨, ·, \) is a cRL−;
• ¬ is an operation on A satisfying the following properties:
(dn) ¬¬a = a;
(in) a\¬b = b\¬a.

Lemma 2. In IncRL, one has ¬a = a\0 and a · ¬a = 0 where 0 = ¬1, which doesn’t fit IncRL−.

We have the following Figure 5 example shows that IncRL− is essentially different with IncRL:
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d

a

c

be

· a b c d e

a b a c d d

b a b c d d

c c c c c c

d d d c d d

e d d c d d

a b c d e

¬ a b d c e

\ a b c d e

a b a c d c

b a b c d c

c d d d d d

d c c c d c

e c c c d c

Figure 5. An example of IncRL−

Definition 3. The set of formulas (terms) F for InFL−
e is defined inductively as follows:

F ∋ α ::= p | α · β | α\β | α ∧ β | α ∨ β | ¬α
where p ∈ Var.

Definition 4. The Gentzen-style sequent calculus G for InFL−
e :

(1) Axioms:
(Id)α⇒ α (DN2)¬¬α⇒ α

(2) Logical rules:
α · β ⇒ γ

β ⇒ α\γ (RES\) β ⇒ α\γ
α · β ⇒ γ

(RES−\)

α⇒ β

α ∧ γ ⇒ β
(∧L) α⇒ β α⇒ γ

α⇒ β ∧ γ (∧R)

α⇒ β γ ⇒ β

α ∨ γ ⇒ β
(∨L) α⇒ β

α⇒ β ∨ γ (∨R)

α · β ⇒ ¬γ
γ · β ⇒ ¬α (¬)

(2) Cut rule:
α⇒ β β ⇒ γ

α⇒ γ
(Cut)

Theorem 5 (Soundness and Completeness). G is sound and complete with respect to IncRL−s.

The sequent calculus for cRL− with a quasi-involutive negation (denoted by qIncRL−) is just G omitting
¬¬α⇒ α, denoted by qG.

Definition 6 (Kolmogorov Translation). The Kolmogorov translation is a function ko : F → F defined induc-
tively as follows:

(1) ko(α) = ¬¬α if α is atomic;
(2) ko(α ∧ β) = ¬¬(ko(α) ∧ ko(β));
(3) ko(α ∨ β) = ¬¬(ko(α) ∨ ko(β));
(4) ko(¬α) = ¬ko(α);
(5) ko(α · β) = ¬¬(ko(α) · ko(β));
(6) ko(α\β) = ¬¬(ko(α)\ko(β)).

Lemma 7. ⊢qG ko(α)⇒ ko(β) iff ⊢G α⇒ β where ko() is the Kolmogorov translation.

Theorem 8. G can be embedded into qG.

Corollary 9. IncRL− can be embedded into qIncRL−.

Definition 10. An algebra F̈ = (A,∧,∨, ·, \, ∗,→,⊥,⊤) is a bounded commutative bi-residuated lattice-ordered
semigroup (denoted by cbRL−) such that (A,∧,∨, ·, \) is a cRL−, and (A,∧,∨, ∗,→) is a commutative residuated
lattice-ordered groupoid. ⊥,⊤ ∈ A are the least and greatest elements in A. Two fusions ∗, · are operations on
A satisfying the following condition for all a, b, c ∈ A:

If (a · b) ∗ c = ⊥, then (a · c) ∗ b = ⊥.
One defines ¬a = a→ ⊥, then one has a ∗ ¬a ≤ ⊥.

Theorem 11. Every qIncRL− can be extended to a cbRL−.
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Definition 12. The set of formulas (terms) F for the logic of cbRL− (denoted by bFL−
e ) is defined inductively

as follows:

F ∋ α ::= p | α · β | α\β | α ∧ β | α ∨ β | α ∗ β | α→ β | ⊥
where p ∈ Var. We use the abbreviations ¬α := α→ ⊥ and ⊤ = ¬⊥.

Definition 13. Let , and ; be structural counterparts for · and ∗ respectively. The set of all formula structures
FS is defined inductively as follows:

FS ∋ Γ ::= α | Γ,Γ | Γ; Γ

Definition 14. The Gentzen-style sequent calculus Gb for bFL−
e can be obtained from G by deleting the (DN2)

and (¬) but adding the following rules:

(1) Logical rules:

Γ[α, β]⇒ γ

Γ[α · β]⇒ γ
(·L) Γ1 ⇒ α Γ2 ⇒ β

Γ1,Γ2 ⇒ α · β (·R)
Γ[α;β]⇒ γ

Γ[α ∗ β]⇒ γ
(∗L) Γ1 ⇒ α Γ2 ⇒ β

Γ1; Γ2 ⇒ α ∗ β (∗R)

∆⇒ α Γ[β]⇒ γ

Γ[∆;α→ β]⇒ γ
(→ L)

α; Γ⇒ β

Γ⇒ α→ β
(→ R)

∆⇒ ⊥
Γ[∆]⇒ α

(⊥)

(2) Structural rules:
(∆1,∆2);∆3 ⇒ ⊥
(∆1,∆3);∆2 ⇒ ⊥

(R−⊥)

Γ[∆1,∆2]⇒ β

Γ[∆2,∆1]⇒ β
(Ex)

Γ[∆1;∆2]⇒ β

Γ[∆2;∆1]⇒ β
(Ex;)

Γ[∆1, (∆2,∆3)]⇒ β

Γ[(∆1,∆2),∆3]⇒ β
(As1)

Γ[(∆1,∆2),∆3]⇒ β

Γ[∆1, (∆2,∆3)]⇒ β
(As2)

Theorem 15 (Soundness and Completeness). Gb is sound and complete with respect to cbRL−s.

Theorem 16 (Cut-Elimination). ⊢Gb Γ⇒ β iff ⊢Gb Γ⇒ β without any application of (Cut) rule.

Corollary 17 (Subformula Property). If ⊢Gb Γ ⇒ α, then there exists a derivation of Γ ⇒ α in Gb such that
all formulas appearing in the proof are subformulas of formulae appearing in Γ⇒ α.

Theorem 18 (Decidability). Gb and bFL−
e are decidable.

Theorem 19 (Conservative Extension). For any qG sequent α⇒ β, ⊢qG α⇒ β iff ⊢Gb α⇒ β.

Theorem 20 (Decidability). qG is decidable.

Corollary 21. G and InFL−
e are decidable.
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